Structural Study on the Impact of Aerodynamic Loads on Winglet Support Structures
Abstract
Aerodynamic spoilers are intended to reduce drag forces and generate lift on surfaces. However, dynamic operating conditions can affect their performance and that of their supporting structures. This study evaluates the impact of aerodynamic loads on a spoiler's supporting structure using fluid-structure interaction (FSI) analysis. Three NACA airfoil models were analyzed to benchmark their structural behavior. Simulations using Ansys® software modeled the spoiler's airflow-induced pressures and structural displacements, considering dynamic loads derived from a similarity study between a full-scale (1:1) vehicle model and a scaled-down (1:6) version. The results revealed the mechanical behavior of the support under different flow conditions, assimilating the forces produced and how this is affected by the aerodynamics produced on the spoiler, generating data that informs the evaluation of this system and ensures reliability. The optimization of the support model allows for greater control over measurements, which is of great importance for wind tunnel testing, ensuring that evaluations are not affected by mechanical displacements of the support. The CAD model, combined with finite element Methods (FEM), allows visualization of the mechanical and aerodynamic behavior before manufacturing, thereby reducing the time and costs associated with physical testing and allowing critical failure points to be identified. The work includes studies through simulations of the aerodynamic and structural systems of the spoiler supports, generating data that helps understand and facilitate the evaluation of these systems and guarantees their reliability. Computational simulation is an essential tool for development and validation in the automotive sector.
Keywords
Full Text:
PDFReferences
McBeath, S. (2005). Aerodinámica del automóvil de competición. CEAC técnico.
Katz, J. (1995). Race car aerodynamics: designing for speed. (No Title).
García, J. F. O. ESTUDIO AERODINÁMICO EN TÚNEL DE VIENTO DE UN ALERÓN FRONTAL DE UN COCHE DE COMPETICIÓN GP2.
Yunus, C., Cimbala, J., & Sknarina, S. F. (2006). Mecánica de fluidos fundamentos y aplicaciones. Distrito Federal: McGraw Hill.
Levin, J., & Rigdal, R. (2011). Aerodynamic analysis of drag reduction devices on the underbody for SAAB 9-3 by using CFD..
Airfoil tools. (s. f.). http://airfoiltools.com/
Kumar, M. S., Rao, B. A., & Mallaiah, G. (2017). Design, analysis and manufacturing of a car rear spoiler for drag reduction. International Advanced Research Journal on Sciences, Engineering and Technology, 4(6), 89-96.
Cheng, S. Y., & Mansor, S. (2017). Influence of rear-roof spoiler on the aerodynamic performance of hatchback vehicle. In MATEC web of conferences (Vol. 90, p. 01027). EDP Sciences.
Marumo, R., Molwane, O. B., & Agarwal, A. (2020). Numerical Analysis of Rear Spoilers in Improving Vehicle Traction. In Advances in Lightweight Materials and Structures: Select Proceedings of ICALMS 2020 (pp. 165-173). Singapore: Springer Singapore.
Ansys® Academic Research Fluent, Release 23.2.
SIMULEXA. (n.d.). Descubre las Claves para Realizar un Buen Mallado en el Análisis de Elementos Finitos. Retrieved January 17, 2025, from https://www.simulexa.com/es_es/descubre-las-claves-para-realizar-un-buen-mallado-en-el-analisis-de-elementos-finitos/
ANSYS, Inc. (n.d.). Meshing User’s Guide: Mesh quality. ANSYS Help. Retrieved December 15, 2024, from https://ansyshelp.ansys.com/public/account/secured?returnurl=/Views/Secured/search.html?q=mesh%20quality&v=24.2&man=%22Meshing%20User%27s%20Guide%22&pn=%22Meshing%22〈=en.
ANSYS. (n.d.). ANSYS Optimiza el mallado. Retrieved January 11, 2025, from https://ansys.website/optimiza-el-mallado-cfd-en-ansys-fluent-de-manera-eficiente/
Eftekhari, H., Al-Obaidi, A. S. M., & Eftekhari, S. (2020). The effect of spoiler shape and setting angle on racing cars aerodynamic performance. Indonesian Journal of Science and Technology, 5(1), 11-20.
Djavareshkian, M. H., & Esmaeli, A. (2011). Smart spoiler for race car. World Academy of Science, Engineering and Technology, International Journal of Aerospace and Mechanical Engineering, 5(1).
Ansys. (n.d.). Ansys Fluent Fluid Simulation Software. Retrieved January 17, 2025, from https://www.ansys.com/products/fluids/ansys-fluent
Theurer, M. M., & Rodriguez, J. (2016). Las fibras de carbono como una alternativa para reforzamiento de estructuras. Ingeniería, 20(1), 57-62.
Gano, S. E., Renaud, J. E., Martin, J. D., & Simpson, T. W. (2006). Update strategies for kriging models used in variable fidelity optimization. Structural and Multidisciplinary Optimization, 32(4), 287–298. https://doi.org/10.1007/s00158-006-0025-y
Norwazan, A. R., Khalid, A. J., Zulkiffli, A. K., Nadia, O., & Fuad, M. N. (2012). Experimental and numerical analysis of lift and drag force of sedan car spoiler. Applied Mechanics and Materials, 165, 43-47.
Ansys® Academic Research Static Structural, Release 23.2.
ESSS. (2022). Simulación fluidodinámica computacional (CFD) en la industria minera. https://www.esss.com/es/blog/simulacion-fluidodinamica-cfd-ansys-fluent-minera/
Ros Quintana, D. (2024). Disseny i optimització d'un tren d'alerons aerodinàmics (Bachelor's thesis, Universitat Politècnica de Catalunya).
DOI: https://doi.org/10.52088/ijesty.v5i3.888
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Eduardo Morales, Mario Chávez, Griselda Abarca, Yunuén López, Jesús Mares, Juan Cruz