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Abstract

The volume of payment transactions has grown exponentially, creating a high demand for high-throughput payment processing systems.
These systems must be capable of handling a large number of transactions with minimal delay, while also being highly scalable and resil-
ient to failures. To overcome this challenge, leveraging kafka for event-driven architecture in fintech applications (LK-EDA-FA-
BSCNN) is proposed. At first, input data is gathered from kafka streams. Then, the input data are pre-processed using adaptive two-stage
unscented kalman filter (ATSUKEF is used to clean the data to ensure high-quality input for downstream analysis. Then, the pre-processed
data are fed into binarized simplicial convolutional neural network (BSCNN) is used to predict the future transactions from historical
trends. The proposed LK-EDA-FA-BSCNN method is implemented using python and the performance metrics like accuracy, precision,
sensitivity, specificity, F1-score, and computational time. The LK-EDA-FA-BSCNN method achieves the best performance with 98.5%
accuracy, 95.3% precision and 1.150 seconds runtime with existing methods, like a DRL-based adaptive consortium blockchain sharding
framework for supply chain finance (DRL-ACSF-SCF), a blockchain-based secure storage and access control scheme for supply chain
finance (BC-SS-ACS-SCF), and analysis of banking fraud detection methods through machine learning strategies in the era of digital
transactions respectively.
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1. Introduction

The distributed event streaming platform Apache Kafka aims to provide high-throughput, fault-tolerant data processing [1]. In the fintech
domain, with its emphasis on transaction processing, fraud detection, and advanced business analytics, Kafka is an excellent basis for
event-based systems [2]. Its publish-subscribe paradigm allows decoupled microservices in a system to communicate efficiently, improv-
ing scalability and maintainability [3]. Kafka supports asynchronous communication, which improves fault-tolerance and resilience by
reducing the impact of service failures [4]. For dynamic fintech applications where availability and responsiveness are critical, Kafka
becomes increasingly relevant and valuable [5].

Fintech companies utilize Kafka to stream transaction data, log captures, and system performance monitoring [6]. Kafka's ability to per-
sist events means that historical data can be replayed and analyzed to support audit, compliance and investigative use cases [7]. This is
especially meaningful in a financial landscape where accuracy and traceability of data must be ensured [8]. Developers can also use Kaf-
ka Streams and ksqlDB to perform analytics and transformations directly on the data-stream for reduced latency and quicker decision
making [9]. These tools make financial data easier to process without having to move data into separate processing systems [10].

Kafka also seamlessly integrates with cloud platforms, which helps develop scalable and cloud-native fintech applications [11]. The abil-
ity to work with different cloud providers enables hybrid and multi-cloud strategies in place at today's financial institutions, allowing
them to take advantage of different solutions, while preventing vendor lock-in [12]. Kafka's security features, such as authentication,
encryption, and access control, that are necessary to protect sensitive financial data and regulatory compliance [13], also make it a viable
option for financial agencies under strict data privacy legislation, alongside cyber-security risks [14]. Ultimately, Kafka enables fintech
systems to become more intelligent, reactive, and flexible due to its strong event-driven architecture [15].

2. Literature Review

There are various research works based on Kafka for event-driven architecture in fintech through different techniques. Some of them are
reviewed here.

In 2023, Li, D., Han.et al. [16] have presented Fabric-SCF was a secure storage system built on the Blockchain and was aimed at protec-
tion the privacy and confidentiality of business transaction and financial credit data. This solution used distributed consensus, rather
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than traditional supply chain finance (SCF) methodologies that rely on third-party platforms and centralized infrastructures, to provide
data security, traceability, and immutability. With smart contracts integrated to specify operational procedures and enforce access rules,
Attribute-Based Access Control (ABAC) controls access and promotes dependable and efficient system behavior. A disadvantage of
Fabric-SCF was its complexity and high implementation cost, which may pose challenges for small or resource-limited organizations.

In 2023, Hu, S., Lin. et al. [17] have presented a technique for improving blockchain performance for Web 3.0 and FinTech services. In
sectors such as supply chain finance (SCF), traditional blockchain systems often have lower success rates and long transaction delays.
Sharding a blockchain was a way to increase processing power. Conventional sharding systems were designed for public chains and
were therefore inappropriate for SCF setups based on consortium blockchains. A disadvantage of conventional sharding was its fixed
partitioning and public blockchain design, making it unsuitable for dynamic SCF environments.

In 2023, Hanae, A. et al. [18] have presented that the use of electronic banking was growing in popularity and was expected to do so even
more as digital financial transaction technologies advanced. An increase in fraudulent transactions in internet banking was one unfore-
seen effect of this trend. The techniques used by bad actors also evolve with technology. These actors may now imitate the transaction
behavior of authorized users thanks to emerging technologies, and their constantly changing strategies make identification more difficult.
A disadvantage of increased electronic banking was the rise in sophisticated fraudulent activities, where attackers mimic legitimate user
behavior, complicating detection.

In 2024, Mikhaylov, A. et al. [19] have presented techniques that use fuzzy logic and statistical methods to assist investors in identifying
and selecting the best long-term portfolio out of 218 digital financial assets that were offered for sale on the Russian market. Although
organizations identified as operators of digital financial assets typically provide multiple classes of these assets for trade, only floating
digital financial assets remain available for investor transactions. A disadvantage was that despite the variety of digital financial asset
classes offered, only floating assets were available for investor transactions, limiting choices.

In 2024, Oza, J .et al. [20] have presented an advanced data streaming pipeline that uses Cassandra for NoSQL storage, it was designed
to use Docker for containerization, Apache Spark for dynamic transformation, and Apache Kafka for distributed streaming, developed,
and deployed. Their components, features, and operational indicators were used to characterize how these technologies were integrated.
This setup shows how open-source solutions may provide robust and scalable data pipelines in high-pressure settings. A disadvantage
was the complexity and resource intensity of integrating multiple open-source technologies, which may increase maintenance and opera-
tional challenges.

In 2024, Carnero, A. et al. [21] have presented extension of the Kafka-ML framework incorporates Online Learning (OL) capabilities,
enabling continuous adaptation of ML/AI pipelines to incoming data streams. This enhancement supports indefinite learning for both
distributed and centralized ML/AI models, facilitating seamless deployment of Deep Neural Networks (DNNs) in streaming environ-
ments. A disadvantage was that integrating Online Learning into the Kafka-ML framework increases system complexity and demands
substantial computational resources for continuous model updates.

In 2024, Cui, Y.et al. [22] have presented Reinforcement learning (RL) and Deep Autoencoder (DAE) models were combined in a novel
framework to enhance supply chain management's financial risk forecasting. It improves decision-making by utilizing comprehensive
indicators such as cash flow patterns, credit risk scores, and liquidity ratios by extracting important features from financial data and op-
timizing with RL. The requirement for a large amount of training data and the high computational complexity were drawbacks that
might restrict practical implementation in certain supply chain settings. Table 1 displays summary of literature survey.

Table 1. Summary of Literature Survey

Authors Methods Dataset Advantages Disadvantages

Li, D., Han.et al.[16] Machine Learning supply chain finance Ensures security, pri- High complexity,
(ML) transactions vacy, traceability and performance may
immutability degrade under high
data volume or com-

plex access rules
Hu, S, Lin. etal.[17]  Blockchain Network Kafka Streams Increases blockchain  Sharding  introduces
efficiency and tailored synchronization and

for consortium chains

security complexity

Hanae, A. et al.[18] CNN (Convolutional Credit Card Fraud Identifies evolving High  false-positive
Neural Network) Transactions (CCFT) fraud tactics rate  possible and
dataset needs continuous
retraining to  cope
with evolving threats
Mikhaylov,A. et Blockchain Network Large Financial Da- Optimizes long-term Limited to floating
al.[19] tasets for Banking and portfolios and wuses digital assets
Finance Sharpe ratio
Oza, ] .et al.[20] CNN  (Convolution Random User Dataset ~ Supports dynamic Requires careful con-
Neural Network) data transformation in  figuration and
streaming ~ environ- maintenance
ments
Carnero, A. etal.[21]  Deep Neural Net- Kafka Batch 10 Da- Enables continuous OL models can be less
works (DNNs) taset model updates stable than batch
models
Cui, Y.et al.[22] Reinforcement Learn- Large Scale Improves risk fore- RL training requires
ing (RL) Financial Dataset casting careful tuning and

sufficient exploration

Recent research has explored enhancing supply chain finance and financial data security through technologies such as ML, blockchain
networks, and CNN. However, each of these approaches presents significant limitations. Fabric-SCF suffers from high implementation
costs, system complexity, and limited suitability for small or resource-constrained organizations. Sharding in public blockchains lacks
flexibility and is poorly suited for dynamic, consortium-based supply chain environments. Fraud detection in electronic banking faces
challenges in identifying attackers who mimic legitimate user behavior due to evolving threat techniques. Al-based risk forecasting and
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portfolio optimization require high computational power and large volumes of training data, limiting their real-world applicability. The

integration of online learning with data streaming systems like Kafka-ML creates additional complexity and requires additional computa-

tions. Shared issues among these same systems include computational overhead, limited scalability, limited accessibility, and difficulty in

integrating multiple technologies, all of which have sparked the current research to seek more practical, efficient, and adaptable systems.

The LK-EDA-FA-BSCNN in this paper has been proposed to address the challenge of efficient and resilient transaction processing in

fintech applications. Traditional systems oftentimes address scaling performance, speed, and fault tolerance in highly agnostic ways. As

transaction growth exponentially increases in fintech applications, traditional systems may struggle to scale seamlessly, act resiliently,

and respond efficiently. The proposed framework builds on a Kafka based event-driven architecture based data ingestion and data pro-

cessing layer that ensures scale, fault tolerance, and efficient low latency. The framework's BSCNN allows for fast and accurate trend

prediction for transactions that can learn from the past to minimize computational effort. This integrated framework will provide resilient

low latency operations appropriate for modern fintech environments.

Main contribution of this research work is abridged as follows,

1. Implements streaming data processing within Kafka and ingests financial transaction data, enabling a robust event-driven architecture
tailored for fintech applications.

2. Demonstrated that Kafka-microservices outperform monolithic systems in throughput latency uptime and fault tolerance for financial
applications

3. Applying a BSCNN to analyze past financial data in order to predict upcoming transaction patterns.

4. Ensures practical applicability by implementing the framework in Python, showcasing its scalability for deployment in production-
level FinTech environments.

5. The obtained results of proposed LK-EDA-FA-BSCNN algorithm is comparing to the existing models such as BC-SS-ACS-SCF,
DRL-ACSF-SCF and BFEDM-MLS-EDT respectively.

The remaining manuscript is arranged as follows: Part 2 displays proposed methodology, Part 3 results with discussions, and Part 4 con-
cludes the paper.

3. Methods

In this section, the LK-EDA-FA-BSCNN method is presented, leveraging Kafka for an event-driven architecture in fintech applications.
Initially, input data is collected from Kafka streams. To ensure data quality, ATSUKEF is applied for pre-processing. This filtering step
involves cleaning the input data. The processed data is then fed into a BSCNN, which analyzes historical transaction trends to forecast
future activities. This integrated approach improves prediction accuracy and supports decision-making in financial systems. Figure 1
displays the block diagram of the proposed LK-EDA-FA-BSCNN.

The input data is
collected from a
Kafka Streams

Pre-processing using
Cleans the input

Adaptive Two-stage -
iR e data

Unscented Kalman
Filter (ATSUKF)

Prediction using Predict the future
Binarized Simplicial ~——— transactions from

Convolutional Neural historical trends

Networks (BSCNN)

Fig 1. The Block Diagram of the proposed LK-EDA-FA-BSCNN

3.1. Data Acquisition

At first the input data is collected from a Kafka Streams [23]. Kafka Streams is a client library that uses Apache Kafka as its underlying
messaging system to make it easier to build applications and microservices. It allows developers to process streaming data within Kafka,
transforming input topics into output topics. Kafka Streams offers a streamlined way to process data, making it well-suited for event-
driven solutions and complex analytics.

3.2. Pre-processing using Adaptive Two-stage Unscented Kalman Filter (ATSUKF)

This sector, pre-processing using adaptive two-stage unscented kalman filter (ATSUKF) method [24] is discussed. The ATSUKF tech-
nique is used for clean the input data. ATSUKF method is ensures high-quality input for downstream analysis. It enhances data stream
analysis in event-driven fintech applications when integrated with Kafka. By employing the unscented transform and adaptively adjust-
ing process and measurement noise covariances, ATSUKF ensures accurate state estimation in nonlinear environments. Its strengths
robustness, adaptability to noise variability, and improved estimation accuracy align well with Kafka’s scalable, event-driven infrastruc-
ture, supporting more intelligent and resilient fintech systems are expressed in Equation (1).
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Where is denoted as the attack/bias vector at time k , Y is indicated as the moment when the attacker

successfully accesses the measurement data; G is represented as the attack distribution matrix of measurement variables; and

T
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R %4 is indicated as the measurement noise vector at time = . The ATSKF method effectively reduces noise in
raw input data, resulting in cleaner and more reliable data for analysis. This is especially beneficial in systems experiencing high uncer-
tainty or rapidly changing conditions, as described in Equation (2),
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is denoted as the measurement function of the measurement variable ¥

variable detected by emotions; and ne {1’2’N} ATSUKF method for fintech applications using Katka, where it ensures clean,
trustworthy data streams for event-driven processes like fraud detection and risk evaluation expressed in Equation (3),

(2)

where is the set of the measurement
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Pk+l|k - PL T S,'.'+1Wb |(3)
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Where, Lk predicts the next emotional state, kK is the current state belief, ~**! represents new speech features and = ? is the

weight adjusting influence. Finally the ATSUKF method was used to clean the input data. Predictive analysis is then performed using
pre-processed data.

3.3 Prediction using Binarized Simplicial Convolutional Neural Networks (BSCNN)

In this section, classification using binarized simplicial convolutional neural network (BSCNN) is discussed [25]. BSCNN method is
used to predict the future transactions from historical trends. To forecast future transactions from historical trends, BSCNN method lev-
erage binary weights for efficient computation and reduced memory usage. They model complex, multi-dimensional relationships using
simplicial complexes while preserving accuracy. By capturing higher-order patterns in data, BSCNN enables fast, scalable inference.
This makes the method ideal for transaction prediction in fields like finance and cyber-security, especially in environments where com-
putational resources are limited and energy efficiency is essential in Equation (4).

L, =UANU; 4)

U A
Where ¥ is denoted as the matrix of eigenvectors and  * is indicated as the matrix of future transactions representing network be-
haviour patterns in the historical trends. Forecast future transactions by analysing past trends and identifying repeating patterns seasonal
changes and irregularities are expressed in Equation (5)

~ — ]T
x, =U, x, )

X, . . . . .
Here ~ ¥ represents the future transactions. BSCNN uses binary weights to reduce memory and computation needs, offering energy-
efficient transaction forecasting ideal for low-resource fintech environments are shown in Equation (6),

J .
Ukh(AI: )U,Exk = h(Lk )xk ~ zwk,jl‘{;xk
J=0 (6)

w, .
Where  ©/ is the weight parameter and J is the Slength of the spatial convolution used in the historical trends. Finally, the BSCNN
method has predicted the future transactions from historical trends. Figure 2 displays architecture diagram of the BSCNN.
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| o ° Bi-SCNN Bi-SCNN Bi-SCNN 7
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Xoo | Bi-SCNN Bi-SCNN
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Fig 2. Architecture Diagram of BSCNN
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Figure 2 illustrates the architecture of the BSCNN method. The input X s decomposed into three components

Xoo- X gand X,

representing features from future transactions. Each component passes through three sequential Bi-SCNN

Z,. . M. .
layers, producing intermediate features "/ = and masks /. The masks are used to modulate the features via element-wise multi-
plication before being forwarded to the next layer. Finally, outputs from each simplicial level are combined to generate the final out-

put Z , integrating multi-level topological information effectively.

4. Result and Discussion

The result of proposed approach is described in this section. The proposed LK-EDA-FA-BSCNN technique is then simulated in Python
and compiled utilizing Jupiter notebook and executed in 64 GB RAM, Intel Core 19-13900k CPU, and 500 GB SSD storage. The process
begins by splitting dataset into training (60%) and testing (40%) groups, followed by performance evaluation of various classification
algorithms. The obtained outcome of the proposed LK-EDA-FA-BSCNN approach is analysed with existing systems like
BC-SS-ACS-SCF, DRL-ACSF-SCF and BFDM-MLS-EDT correspondingly, with prior foundational insights into BC compounds pro-
vided by Tzeli and Mavridis [26].

4.1. Performance Measure
This is an essential step for selecting optimum classifier. Performance measures are evaluated to assess performance with Accuracy,
precision, recall, specificity, F1-score, and AUC (Area under curve). To scale performance measure, it is deemed. The True Positive

( TP ), True Negative ( IN ), False Positive (F P ), and False Negative ( FN ) models must be acquired in order to scale the per-
formance metric.

4.1.1. Accuracy

Accuracy is a metric that measures the percentage of accurate estimations made by a model analysed to the overall count of predictions.

IP+IN
ITP+TIN+FP+FN

Accuracy=
(7
4.1.2. Precision

Precision measures how consistently a process or model correctly identifies relevant outcomes, emphasizing accuracy in prediction. It is
crucial when minimizing false positives is essential, ensuring that results are reliable and accurate.

- TP
Precision= ——
TP+ FP
(8)
4.1.3. F1- score
The Fl-score is a metric that measures a classification method's accuracy by balancing recall and precision.
2 x Pr ecision x Re call
F1- Score =
Pr ecision + Re call )

4.1.4. Sensitivity
Recall evaluates the capacity of a model to find all relevant instances while minimizing false negatives. Recall is important in situations
when capturing all true positives is more important than avoiding false positives.

Recall = P

TP+ FN (10)

4.1.5. Specificity
Specificity refers to the level of detail and precision with which something is described or defined, often distinguishing it from broader or
more general concepts.

N

specificity = ——
pecificit TN + FP (11)

4.2. Performance Analysis
Figure 3-6 illustrates simulation results of proposed LK-EDA-FA-BSCNN method. Then the proposed LK-EDA-FA-BSCNN system
was connected to BC-SS-ACS-SCF, DRL-ACSF-SCF and BFDM-MLS-EDT method respectively.
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Fig 3. Performance Analysis of Precision

Figure 3 shows a performance evaluation of precision using Kafka in event-driven architectures within fintech applications. It shows that
Kafka's speed guarantees timely event processing within an event-driven architecture, so the use of Kafka within a fintech application
can help avoid issues associated with data loss and guarantees a high level of precision needed in complex systems for financial transac-
tions and subsequently, analytics. For instance, BC-SS-ACS-SCF and DRL-ACSF-SCF provide a precision of near 88.5% and BFDM-
MLS-EDT has a precision near 75.8%. The previously proposed LK-EDA-FA-BSCNN model provides the best precision between the
models evaluated of near 95.3%. The proposed LK-EDA-FA-BSCNN model demonstrates better precision and therefore accuracy than
the existing methods evaluated in this analysis, as also explored by Samiee, Borulkar, DeMara, Zhao, and Bai [27]. This depicts that the
LK-EDA-FA-BSCNN is the most effective method as it relates to precision for this evaluation.

100

95 1

90 1

85 1

80 - o

751

F1-score (%)

70 1

65

60
BC-SS-ACS-SCF DRL-ACSF-SCF BFDM-MLS-EDT LK-EDA-FA-BSCNN

(Proposed)
Methods
Fig 4. Performance Analysis of F1-score

Figure 4 provides an analysis of the results in terms of the F1-score from using Kafka through an event-driven architecture for fintech
apps. The performance of Kafka shows that it is effective for the accuracy and balanced precision-recall features, making it a good re-
sponsible process to fintech system efficiency when it comes to reliable event processing. For downward shipping, BC-SS-ACS-SCF
achieves close, approximately 78.5% and DRL-ACSF-SCF achieves 82.5% and BFDM-MLS-EDT is 80.3%. The proposed LK-EDA-
FA-BSCNN method achieved the highest overall F1-score at approximately 97.2%. The difference in performance index differentials
demonstrates a considerable improvement of where the proposed method performs in the evaluation index relative to the other 3 existing
approaches. This clearly shows that LK-EDA-FA-BSCNN is the most effective in terms of the F1-score for the investigated task.
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Figure 5 performs a performance assessment of sensitivity using Kafka in established event-driven architectures for fintech applications,
describes the effects of Kafka configuration on event-driven architecture, and where the current work has outperformed established re-
sults in responsiveness and reliability. For easy management of financial events through event-driven architecture, low-latency is critical.
BC-SS-ACS-SCF achieved a sensitivity of 78.3%, DRL-ACSF-SCF with 76.5%, BFDM-MLS-EDT with 80.5%, and proposed LK-
EDA-FA-BSCNN with 95.5% were the sensitivity outputs presented. The first three methods all have similar sensitivity outputs in a
narrow range of 76.5 to 80.5%. The proposed method has outperformed the others by a decisive margin enabling the problem at hand to
be more accurately detected with a sensitivity of 95.5%. The difference is validly substantial by displaying a clear determination that LK-
EDA-FA-BSCNN is the most effective with respect to sensitivity for the evaluated task.
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Fig 6. Performance Analysis of Specificity
In Fig. 6, you can see performance results for specificity while using Kafka in event driven architectures for fintech applications. It
shows Kafka performs well with respect to data streams using efficient efficiency. High throughput and low latency requirements are
indispensable for financial transactions and services with max tolerance on reliability and scale. BC-SS-ACS-SCF performed at approx-
imately 83.5%, DRL-ACSF-SCF performed at about 85.5%, BFDM-MLS-EDT performed around 86%, but the proposed LK-EDA-FA-
BSCNN performed better and highest, at almost 99%, performance on specificity. The high performance specificity of the proposed LK-
EDA-FA-BSCNN can be clearly demonstrated. It can be concluded that the proposed LK-EDAFA-BSCNN approach is the better meth-

od for working with and evaluating specificity for the tasks evaluated.
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Table 2. Comparison results of the performance analysis

Solution Methodology Accuracy (%) g;)mputatlonal Time
BC-SS-ACS-SCF 87.9 1.691
DRL-ACSF-SCF 914 1.429
BFDM-MLS-EDT 95.2 1.389
LK-EDA-FA-BSCNN (Proposed) 98.5 1.150

Table 2 provides a performance comparison of four solution methodologies based of accuracy and computation time. BC-SS-ACS-SCF
has an accuracy of 87.9% with a computation time of 1.691 seconds. DRL-ACSF-SCF has an accuracy of 91.4% with a computation
time of 1.429 seconds. BFDM-MLS-EDT has an accuracy of 95.2% with a computation time of 1.389 seconds. The proposed LK-EDA-
FA-BSCNN method has an accuracy of 98.5%, and the computation time is 1.150 seconds. The proposed LK-EDA-FA-BSCNN method
has the best efficiency and the best accuracy out of the four methods, meaning it was very effective for the task.

4.3. Discussion

The LK-EDA-FA-BSCNN model utilizes a Kafka-enabled microservices architecture for efficient processing of financial transactions by
Jin [28]. By combining Kafka with its neural network the LK-EDA-FA-BSCNN model provides a high-throughput event-driven and
real-time method for processing large volumes of financial data in a responsive and robust manner. Qu, Xu, Nikouei, and Chen evaluated
microservices-based edge computing platforms, which informs the LK-EDA-FA-BSCNN model’s event-driven design for real-time,
scalable fintech transaction handling [29]. Furthermore, the LK-EDA-FA-BSCNN model records higher levels of precision across all
metrics creating a more reliable method than the existing technologies available in the literature. Overall, the LK-EDA-FA-BSCNN
model is a highly accurate, reliable, fast, and an efficient transactional data processing technology, for integration into the financial sys-
tems of today. The LK-EDA-FA-BSCNN model achieved overall maximum precision level of approximately 95.3%, F1-score of ap-
proximately 97.2%, sensitivity of approximately 95.5%, and specificity of 99%. Existing methods such as BC-SS-ACS-SCF, DRL-
ACSF-SCF, and BFDM-MLS-EDT methods recorded lower values, as demonstrated by the following: precision between 75.8% and
88.5%, F1-score between 78.5% and 82.5%, sensitivity ran from 76.5% and 80.5%, and specificity from 83.5% and 86%. Therefore, the
proposed LK-EDA-FA-BSCNN method has significantly higher precision and specificity than the existing methods, demonstrating better
accuracy, better balanced levels of detection, and better reliability for the fintech industry into which it can be integrable. The proposed
LK-EDA-FA-BSCNN reporting maximum accuracy of 98.5% from the digits of processed standardized samples and computation time
was only 1.150 seconds.

5. Conclusion

In summary, the LK-EDA-FA-BSCNN framework described in this paper leverages Kafka to enable scalable event-driven architecture in
fintech while delivering fault tolerance, improved integration, and more effective and responsive components in financial solutions. In
doing so, it alleviates several modern challenges facing financial systems today, including real-time data processing, fault tolerance, and
interoperability of distributed services. The LK-EDA-FA-BSCNN framework had the best performance of 98.5% accuracy, 95.3% preci-
sion, 97.2% F1-score, 95.5% sensitivity, 99% specificity, and 1.150 seconds execution time. Although Kafka provides more scalability
and fault tolerance for event-driven architectures as a payment service in fintech, there are still limitations. Kafka's eventual consistency
model may introduce latency into systems especially in critical bookings. Under significant transactional load, handling exactly-once
semantics can be challenging and resource-intensive. Data security and compliance must also receive ongoing attention because they
apply equally to Kafka streams as an event-driven architecture platform. Ongoing future work includes investigating and optimizing
Kafka's integration into advanced stream processing frameworks to minimize latency for latency-sensitive systems, providing additional
security measures across Kafka for sensitive financial data, and exploring different and novel architectures that combine Kafka and tradi-
tional messaging systems to increase throughput and overall resilience in larger-scale fintech environments.

References

[11 Garcia, R.D., Ferreira, J.C., Zanotti, L., Ramachandran, G., Estrella, J.C. and Ueyama, J., 2024. An automated decision-making
system employing complex networks and blockchain for the decentralized stock market. Expert Systems with Applications, 257,
p.125131.

[21 Yao, W., Deek, F.P., Murimi, R. and Wang, G., 2023. Sok: A taxonomy for critical analysis of consensus mechanisms in consorti-
um blockchain. IEEE Access, 11, pp.79572-79587.

[3]1 Singh, J. and Chaudhary, N.K., 2024. Rest security framework for event streaming bus architecture. International Journal of Infor-
mation Technology, 16(5), pp.3033-3047.

[4] Ibtissame, E.Z.Z.A.-H.O.U.L,, Rachida, A.A. and Abdelaziz, M.A.R.Z.A K., 2024. Aquaponics Revolution: Reinforcing perfor-
mance by means of Apache Spark and Apache Katka. Procedia Computer Science, 241, pp.624-629.

[5] Kumar, S.S., Chandra, R., Harsh, A. and Agarwal, S., 2025. Fuzzy rule-based intelligent cardiovascular disease prediction using
complex event processing. The Journal of Supercomputing, 81(2), p.402.

[6] Zahra, F.T., Bostanci, Y.S., Tokgozlu, O., Turkoglu, M. and Soyturk, M., 2024. Big Data Streaming and Data Analytics Infrastruc-
ture for Efficient Al-Based Processing. In Recent Advances in Microelectronics Reliability: Contributions from the European
ECSEL JU project iRel40 (pp. 213-249). Cham: Springer International Publishing.

[71  Gkoulis, D., Bardaki, C., Nikolaidou, M., Kousiouris, G. and Tsadimas, A., 2024. A Hybrid Simulation Platform for quality-aware
evaluation of complex events in an IoT environment. Simulation Modelling Practice and Theory, 133, p.102919..

[8] Steindl, G., Schwarzinger, T., Schreiberhuber, K. and Ekaputra, F.J., 2024. Towards Semantic Event-handling for building Ex-
plainable Cyber-physical Systems. IEEE Open Journal of the Industrial Electronics Society.



International Journal of Engineering, Science and Information Technology, 5 (3), 2025, pp. 545-553 553

(9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]

[19]

[20]

[21]

(28]

[29]

Aishwarya, C.K., Lahari, C.S. and Saheb, S.H., 2024. Data Analytics Tools and Applications for Business and Finance Systems. In
Data-Driven Modelling and Predictive Analytics in Business and Finance (pp. 18-34). Auerbach Publications.

Rosa-Bilbao, J., Boubeta-Puig, J., Lagares-Galan, J. and Vella, M., 2025. Leveraging complex event processing for monitoring and
automatically detecting anomalies in Ethereum-based blockchain networks. Computer Standards & Interfaces, 91, p.103882.
Al-dahasi, E.M., Alsheikh, R.K., Khan, F.A. and Jeon, G., 2025. Optimizing fraud detection in financial transactions with machine
learning and imbalance mitigation. Expert Systems, 42(2), p.e13682.

Rama, M., Kiranteja, V., Sireeshai, M., Vamsi, M. and Sohel, S., 2025. Analyzing the effectiveness of machine learning algorithms
in detecting fraud transactions. In Hybrid and Advanced Technologies (pp. 116-124). CRC Press.

Banirostam, H., Banirostam, T., Pedram, M.M. and Rahmani, A.M., 2025. Analysis and Evaluation of Various Fraud Detection
Methods for Electronic Payment Cards Transactions in Big Data. Journal of Signal Processing Systems, pp.1-22.

Sau, A., Banerjee, A. and Vedhavathy, T.R., Improving fraud detection efficiency: Leveraging machine learning strategies. In Hy-
brid and Advanced Technologies (pp. 33-40). CRC Press.

Odufisan, O.I., Abhulimen, O.V. and Ogunti, E.O., 2025. Harnessing Artificial Intelligence and Machine Learning for Fraud De-
tection and Prevention in Nigeria. Journal of Economic Criminology, p.100127.

Li, D., Han, D., Crespi, N., Minerva, R. and Li, K.C., 2023. A blockchain-based secure storage and access control scheme for sup-
ply chain finance. The Journal of Supercomputing, 79(1), pp.109-138.

Hu, S., Lin, J., Du, X., Huang, W., Lu, Z., Duan, Q. and Wu, J., 2023. ACSarF: a DRL-based adaptive consortium blockchain
sharding framework for supply chain finance. Digital Communications and Networks.

Hanae, A., Youssef, G. and Saida, E., 2023, December. Analysis of Banking Fraud Detection Methods through Machine Learning
Strategies in the Era of Digital Transactions. In 2023 7th IEEE Congress on Information Science and Technology (CiSt) (pp. 105-
110). IEEE.

Mikhaylov, A. and Bhatti, M.I.M., 2024. The link between DFA portfolio performance, Al financial management, GDP, govern-
ment bonds growth and DFA trade volumes. Quality & Quantity, pp.1-18.

Oza, J., Patil, A., Maniyath, C., More, R., Kambli, G. and Maity, A., 2024, May. Harnessing Insights from Streams: Unlocking
Real-Time Data Flow with Docker and Cassandra in the Apache Ecosystem. In 2024 IEEE Recent Advances in Intelligent Compu-
tational Systems (RAICS) (pp. 1-6). IEEE.

Carnero, A., Martin, C., Jeon, G. and Diaz, M., 2024. Online learning and continuous model upgrading with data streams through
the kafka-ml framework. Future Generation Computer Systems, 160, pp.251-263.

Cui, Y. and Yao, F., 2024. Integrating deep learning and reinforcement learning for enhanced financial risk forecasting in supply
chain management. Journal of the Knowledge Economy, pp.1-20.

Joshi, P.K., Building High-Throughput Payment Transaction Systems with Kafka and Micro services.

Hou, D., Sun, Y., Dinavahi, V. and Wang, Y., 2024. Adaptive two-stage unscented Kalman filter for dynamic state estimation of
synchronous generator under cyber attacks against measurements. Journal of Modern Power Systems and Clean Energy, 12(5),
pp-1408-1418.

Yan, Y. and Kuruoglu, E.E., 2025. Binarizedsimplicial convolutional neural networks. Neural Networks, 183, p.106928.

D. Tzeli and A. Mavridis, “First-Principles Investigation of the Boron and Aluminum Carbides BC and AIC and Their Anions BC-
and AIC. 1,” The Journal of Physical Chemistry A, vol. 105, no. 7, pp. 1175-1184, Jan. 2001, doi:
https://doi.org/10.1021/jp003258k.

Ashkan Samiee, Payal Borulkar, R. F. DeMara, P. Zhao, and Y. Bai, “Low-Energy Acceleration of Binarized Convolutional Neural
Networks Using a Spin Hall Effect Based Logic-in-Memory Architecture,” IEEE Transactions on Emerging Topics in Computing,
vol. 9, no. 2, pp. 928-940, May 2019, doi: https://doi.org/10.1109/tetc.2019.2915589.

JIN, “An Introduction to Apache Kafka System Architecture,” Medium, Mar. 27, 2022. https://aws.plainenglish.io/apache-kafka-
system-architecture-cc74e¢7d47904

Q. Qu, R. Xu, Seyed Yahya Nikouei, and Y. Chen, “An Experimental Study on Microservices based Edge Computing Platforms,”
arXiv (Cornell University), Jul. 2020, doi: https://doi.org/10.1109/infocomwkshps50562.2020.9163068.



