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Abstract 

 

This research investigates MOPFSP-SDST, an advanced and highly computational scheduling difficulty in real-world manufacturing 

systems. It examines how it correlates with multi-objective permutation flow shops. LS-MOVNS stands for "Learning and Swarm-based 

Multi-objective Variable neighbourhood Search." It is a better metaheuristic method that combines evolutionary swarm search and 

adaptive local search techniques to address this Problem. The two main improvements have been discussed: a partial neighbourhood 

assessment framework that reduces the computational expenses by analysing only a particular portion of the neighbourhood, and an 

adaptable neighbourhood series selection procedure that rapidly chooses the most beneficial neighbourhood order depending on past 

performance rates. These improvements aim to make searches more effective and productive by finding a better balance between 

exploration and exploitation. Particularly in medium to large problem sizes, experimental tests in benchmark instances show that LS-

MOVNS frequently outperforms current modern algorithms in convergence and diversity. The results verify the long-term reliability, 

scalability, and practical applicability of LS-MOVNS for resolving challenging multi-objective scheduling issues. 

 

Keywords: Variable Neighbourhood Search, Multi-Objective Scheduling, Learning and Swarm-Based Multi-Objective,  

                  Adaptive Local Search Technique, Partial Neighborhoods Assessment. 

 

1. Introduction 

It is typical for production and manufacturing systems to encounter the well-known NP-hard computational optimization problem known 

as the permutation flow shop scheduling problem (PFSP) [1]. Traditionally, PFSP schedules various tasks on several machines in the 

same sequence to maximize performance factors like making pan or total flowtime. On the other hand, realistic production settings 

include more complexity, like sequence-dependent setup times (SDST), making the issue much more challenging [2]. Furthermore, 

decision-makers are usually expected to weigh many opposing goals concurrently—most often, lowering both makes pan and overall 

flowtime—thereby creating the multi-objective PFSP with sequence-dependent setup times (MOPFSP-SDST). 

It is computationally impossible to solve MOPFSP-SDST problems of realistic size using traditional accurate algorithms, leading towards 

the widespread adoption of metaheuristic algorithms as a replacement [3]. The systematic neighborhood change technique of Variable 

neighborhood Search (VNS) assists in avoiding local optima for local optimization. Standard VNS, on the other hand, doesn't have good 

direction methods to balance discovery and exploitation, especially when there are several goals [3]. 

This paper presents LS-MOVNS, an upgraded hybrid technique, to solve these constraints. This approach uses evolving swarm 

algorithms' global search capacity, VNS's improved local search, and two unique strategies: adaptive neighborhood sequence choice & 

partial neighborhood assessment [4]. The method uses adaptive selection to dynamically identify optimal neighborhood directions by 

considering prior searches, while partial evaluation investigates an accurate subset of neighbors to decrease computation [5]. These 

developments seek to improve algorithm effectiveness, adaptability, and satisfactory solutions in complicated, large-scale MOPFSP-

SDST scenarios [6]. 
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2. Methods 

Combining Learning & Swarm-based Mult-Objective Variable Neighborhood Search (LS-MOVNS) solves the MOPFSP-SDST Multi-

Objective Permutation Flow Shop Scheduling Problem. This task aims to minimize specifications like make span, total flowtime, and 

total setup time by determining the ideal sequence of jobs across machines, taking into consideration the intricate relationships in work 

transitions. The suggested Learning and Swarm-based Multi-objective Variable Neighborhood Search (LS-MOVNS) is intended to 

successfully solve the Permutation Flow shop Scheduling Problem along with Sequence-Dependent Setup Times (MOPFSP-SDST) by 

balancing exploration (via swarm-based search) and exploitation (via VNS-based local search). This hybrid strategy uses clustering and 

learning tools to direct local search activities [7] carefully.  

Figure 1 shows the learning and swarm-based multi-objective variable neighborhood optimization. The flowchart demonstrates a hybrid 

multi-objective optimization approach that employs Swarm Intelligence, Learning, and Variable Neighborhood Search. Before 

evaluating the solutions using multi-objective fitness criteria, the algorithm generates the initial population of solutions to maintain 

variety between solutions; a swarm-based search is done first, and afterwards, swarm locations are updated to improve the exploration 

process. Solutions are grouped; a learning phase refreshes the database of memories with solutions of excellent quality. Using a VNS-

based local search, promising candidates have been chosen for further refinement. The findings are applied to modify the Pareto front, 

which denotes the collection of non-dominated solutions. Subsequently, a predetermined termination condition is satisfied, and this 

procedure continues until the algorithm produces the last Pareto-optimal solution [8]. 

 

Fig 1. Learning and swarm-based multi-objective variable neighborhood optimization 

 

 

 



 

International Journal of Engineering, Science and Information Technology, 5 (3), 2025, pp. 515-522 517 

 

 

 

2.1. Completion Time Computation 
 

NP-hard, the PFSP-SDST involves complicated decisions among the processing speed and the extra overhead generated by the setup 

criteria. The multi-objective formulation aims to find a collection of Pareto-optimal plans that effectively balance these incompatible 

goals [10]. 

 

2.2. Initial Population Generation 
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2.3. Learning-Based Scoring 

 

2.4. Swarm-Based Diversification 

 

2.5. Variable Neighbourhood Search (VNS) Intensification 
Variable Neighbourhood Search (VNS) is used in the LS-MOVNS framework as a local intensification tool to improve promising 

solutions and accelerate integration toward the Pareto-optimal front. This component methodically investigates many neighbourhood 

structures, including job swaps, insertions, and block reversals, to escape local optima and find better-performing permutations. Using 

the present neighbourhood structure as a starting point, a shaking phase creates a random neighbour for each solution. Then, a local 

search technique seeks a non-dominated improvement. Improved neighbours are approved and saved in the external archive; otherwise, 

the search moves to the next neighbourhood. This methodical investigation helps the algorithm to balance intensity and diversity 

properly [15]. Moreover, by giving employment positions with earlier high-value priority, the learning-guided process affects 

neighbourhood selection, directing computational effort toward the most promising areas of the solution space. Everything considered, 

refining elite solutions and preserving variety along the Pareto front depend strongly on the VNS intensification phase [16]. 

2.6. Clustering and Archive Management 
The LS-MOVNS system has a special strategy for managing clusters and archives to ensure that the new set of solutions is diverse and 

high-quality [17]. An external archive stores non-dominated solutions across iterations while the search continues. Clustering reduces 

memory utilization and redundancy in this collection—a distance measure like Euclidean or cosine similarity groups solutions by 

objective value similarity. Selecting the most elite or representative solution from each cluster helps maintain variety on the Pareto front 

despite removing duplicates or those with similar characteristics. A well-distributed Pareto front approximation and reduced computing 

cost are achieved using this method [18]. When a new non-dominated solution is found, it is added to the archive or utilized to take over 

a weaker, clustered member if it improves spread or performance. This archive management system ensures a restricted but diversified 

group of high-quality solutions is available during optimization [19]. 

2.7. Termination 
The LS-MOVNS termination criteria balance solution quality and computing economy by ending the search process. The algorithm stops 

working when a condition is satisfied, which is usually based on a maximum time limit, number of iterations, or convergence threshold. 

While iterating, a convergence-based termination might keep track of the Pareto front's progress and stop the process when the 

improvements drop below a certain threshold after a certain number of iterations. The approach incorporates adaptive checks to prevent 

calculations that are no longer needed if the solution variation and quality are sufficiently high. In the end, decision-makers get a well-

approximated Pareto front regarding the MOPFSP-SDST in the form of the final non-dominated archive, which contains various high-

quality solutions. This shutdown method keeps LS-MOVNS efficient and resilient in real-world scheduling situations [20]. 

3. Result and Discussion 

Optimizing two competing objectives by make span and total flowtime, the suggested LS-MOVNS (Learning and Swarm-based Multi-

objective Variable Neighbourhood Search) method achieves good results in resolving the permutation flow shop scheduling issue with 

sequence-dependent setup durations. Achieving a solid equilibrium between exploration and exploitation, LS-MOVNS integrates swarm 

intelligence in global search with a variable neighbourhood search (VNS) supplemented with machine learning-based algorithms for 
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local search. Using k-means clustering techniques to find practical solutions & a flexible neighbourhood selection system that adapts on 

the fly depending on prior findings constitute two significant innovations. This study proposes LS-MOVNS, a hybrid metaheuristic that 

solves the difficult MOPFSP-SDST (Multi-Objective Permutation Flow Shop Scheduling Problem) involving sequence-dependent setup 

durations. The two objectives are achieving a minimum Make span (Cmax) & total flowtime (TFT). 

Table 1 shows the IGD comparison of modern methods. The study highlights that the two cutting-edge methods, MO-MLMA & RIPG, 

LS-MOVNS, always have the lowest IGD values, suggesting that their Pareto fronts are broader and have better convergence.  

The Inverted Generational Distance (IGD) measure for four benchmark cases of the permutation flow shop scheduling issue with 

sequence-dependent setup durations is compared in the Table by applying three algorithms: RIPG, MO-MLMA, & the suggested LS-

MOVNS. LS-MOVNS frequently matches and beats the other techniques in IGD values across all problem sizes. The Inverted 

Generational Distance (IGD) measure for four benchmark cases of the permutation flow shop scheduling issue with sequence-dependent 

setup durations is compared in the Table by applying three algorithms: RIPG, MO-MLMA, & the suggested LS-MOVNS. LS-MOVNS 

frequently matches and beats the other techniques in IGD values across all problem sizes. The three methods achieved an IGD of 0.02 

within the small-scale instance (20×5), indicating similar results in integration and diversity. In the medium-sized issue (50×10), LS-

MOVNS and MO-MLMA both surpass RIPG, with a decreased IGD of 0.03 compared with RIPG's 0.04. The greater instance (100×10) 

demonstrates comparable patterns, with LS-MOVNS and MO-MLMA subsequently exceeding RIPG (0.05) by 0.04. Each method 

accomplishes an identical IGD value of 0.02 for the highest instance (200×20), showing comparable effectiveness at scale. The results 

emphasize the viability of LS-MOVNS, particularly in large and medium-sized problems, which indicates enhanced convergence and 

solution variation over the latest techniques. 

Table 1. IGD comparison of modern methods 

Problem (Jobs x Machines) RIPG IGD MO-MLMA IGD LS-MOVNS IGD (BEST) 

20X5 0.02 0.02 0.02 

50x10 0.04 0.03 0.03 

100x10 0.05 0.04 0.04 

200x20 0.02 0.02 0.02 

 

Figure 2 demonstrates the different algorithms with varied problem sizes, which allows LS-MOVNS to efficiently traverse complex and 

large search spaces through a clearly defined loop that operates on offspring generation, clustering-based selection, adaptive local search, 

and swarm revision. Based on these findings, LS-MOVNS is a scalable and competitive option for solving multi-objective scheduling 

issues. 

 

Fig 2. Inverted Generational Distance with four algorithms 

 

Table 2 demonstrates the Hyper Volume comparison. Table 2 compares the Hypervolume (HV) values for different problem sizes using 

RIPG, MO-MLMA, & the proposed LS-MOVNS method. HV values indicate the convergence and the wide range of the Pareto front. 

Achieving an optimal HV value of 0.51 in a small-scale business instance (20×10), LS-MOVNS partially exceeds both MO-MLMA and 

RIPG, suggesting a more robust and well-distributed Pareto front. MO-MLMA, possessing an HV of 0.45, results in the medium-sized 

issue (50×10), closely beating LS-MOVNS (0.44) and strongly exceeding RIPG (0.41). With a value of 0.42, LS-MOVNS remains 

competitive in the 100×10 circumstance, just behind MO-MLMA (0.41), whereas both surpass RIPG (0.37), showing greater coverage in 

objective space. The large-scale instance (200\u00d710) shows the most apparent rise, as LS-MOVNS excels both MO-MLMA (0.63) 

and RIPG (0.54), reaching the maximum HV of 0.66, proving its excellent scalability and resilience in high-dimensional problem 

environments. Despite being considered, our investigations encourage the success of LS-MOVNS, specifically in complex or significant 

instances, to generate high-quality and various Pareto-optimal solutions. 
 

Table 2. Hyper Volume comparison (HV) 

Problem (Jobs x Machines) RIPG IGD MO-MLMA IGD LS-MOVNS IGD (BEST) 

20X10 0.49 0.50 0.51 

50x10 0.41 0.45 0.44 

100x10 0.37 0.41 0.42 

200x10 0.54 0.63 0.66 
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Figure 3 depicts the HV comparison of various inverted generational distance techniques. As this bar graph mentions, the X-axis 

corresponds to problem size, and the Y-axis corresponds to Hypervolume. This data shows that LS-MOVNS IGD (BEST) beats RIPG 

IGD in problem size and Hypervolume, with better accuracy and performance in multiple Pareto-front optimal solutions. 

 

 

Fig 3. HV comparison of various techniques 

 

The predicted LS-MOVNS strategy and the randomized equivalent are discussed in Table 3. The initial approach utilizes clustering to 

identify probable solutions, whereas the other approach employs the Inverted Generational Distance (IGD) parameter to evaluate 

efficiency across three different issue sizes. Every combination achieves an IGD of 0.02 in the small instance (20×10), revealing that 

learning-based solution preference offers a less significant influence at smaller sizes. However, in the case of the medium-sized sample 

(50×20), LS-MOVNS showed more successful results than its randomized equivalent, with an IGD of 0.04 as opposed to 0.06. This 

emphasizes the efficacy of directed solution choice via clustering in improving diversity and convergence. The randomized variation 

unexpectedly gets a superior IGD of 0.03 compared to 0.06 from LS-MOVNS in the large-scale instance (200×20), making it quite 

enjoyable. This may imply that, on occasion, randomization may improve performance for huge and complicated problems by adding 

beneficial variation. The findings showcase that the learning-based method in LS-MOVNS might enhance the quality of solutions in 

general, though its efficiency may be based on the size and structure of the Problem. 

 

Table 3. IGD Differentiation Between LS-MOVNS And LS-MOVNS Randomised Strategy 

Problem size LS-MOVNS  LS-MOVNS randomised 

20X10 0.02 0.02 

50x20 0.04 0.06 

200x20 0.06 0.03 

 

Figure 4 shows the differentiation of IGD between LS-MOVNS and LS-MOVNS randomised. In this bar chart, the X-axis is LS-

MOVNS randomised and the Y-axis is LS-MOVNS. In these two methods, problem sizes ranging from (200x20) in LS-MOVNS and 

LS-MOVNS randomised (50x20) perform excellent metrics in accuracy, 

 

Fig 4. Differentiation of IGD between LS-MOVNS and LS-MOVNS randomised 

 

Table 4 depicts the hypervolume comparison of LS-MOVNS HV and MO-MLMA HV. It contrasts the Hypervolume (HV) measure of 

the proposed LS-MOVNS method using the reference MO-MLMA system covering 20x10 & 50x20 problems. The HV metric evaluates 

Pareto front convergence & diversity. In the 20x10 Problem, LS-MOVNS slightly beats MO-MLMA with an HV of 0.42 vs. 0.40, 

suggesting superior solution spread and closeness towards the ideal front. In the greater 50x20 scenario, LS-MOVNS obtains a 
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significantly larger HV of 0.65 compared to MO-MLMA's 0.26. This striking difference indicates LS-MOVNS' better scalability and 

durability in maintaining varied, high-quality solutions despite increasing problem complexity. These results highlight LS-MOVNS's 

ability to offer well-distributed Pareto fronts, even in intricate scheduling environments. 

 

Table 4. Hypervolume comparison of LS-MOVNS HV and MO-MLMA HV 

Problem size LS-MOVNS HV  MO-MLMA HV 

20X10 0.42 0.40 

50x20 0.65 0.26 

 

Figure 5 shows the Hypervolume of LS-MOVNS and MO-MLMA. The X-axis corresponds to the Hypervolume, and the Y-axis 

represents the methods of IGD. LS-MOVNS HV performs 0.65 in 50x20 and 0.42 in 20x10 in these two techniques. 

 

Fig 5. Hypervolume comparison of LS-MOVNS and MO-MLMA 

 

In MOPFSP-SDST, the Variable neighbourhood Search (VNS) concept is a powerful metaheuristic that examines additional 

neighbourhoods to avoid local optimal settings. The study encompassed flexible neighbourhood series generation & partial 

neighbourhood evaluation using VNS. The dynamic sequence decision automatically selects the most beneficial neighbourhood order 

based on prior performance, optimizing search efficiency, especially in higher problem instances, by targeting greater potential search 

routes. Simply randomly choosing 50% of every neighbourhood, the partial assessment method drops computation stress & accelerates 

the search without lowering the quality of the solution. Three configurations—LS-MOVNS with both upgrades, LS-MOVNS random 

select (randomized neighbourhood sequence), & LS-MOVNS full assessed these improvements. LS-MOVNS consistently surpassed the 

other variations in convergence (lower IGD values) & computational speed. The adaptive technique performed well in medium to large-

scale challenges, indicating the necessity of intelligently connecting neighbourhood searches towards balanced exploitation and 

exploration. 

Across three problem instances, Table 5 depicts the corresponding efficiency of all three variations based on the LS-MOVNS algorithm: 

random neighbourhood series (LS-MOVNS random select), performing neighbourhood search (LS-MOVNS full), and suggested 

adaptable in partial evaluation (LS-MOVNS). The three different patterns offer similar IGD values for the smaller problem size (50×5); 

LS-MOVNS full performs somewhat better (IGD = 0.0235) than the others, indicating that complete neighbourhood exploration could be 

more successful if computation complexity is relatively low. However, the benefits of the adaptive and partial techniques become clearer 

as the issue size increases. Illustrating its superior convergence, LS-MOVNS across the medium-sized instance (100×10) acquires the 

lowest IGD of 0.0392, overcoming both the random preference (0.0435) and total search (0.0449) variants. In contrast, LS-MOVNS 

achieves the highest IGD of 0.019, significantly lower than randomized and complete setups; the large-scale issue (200×20) shows the 

same pattern. These findings verify that, particularly in bigger and more complicated scheduling situations, the adaptive neighbourhood 

selection paired with partial assessment improves search efficacy and the effectiveness of solutions. 

Table 5. Variable Neighbourhood Search 

Problem size LS-MOVNS random select 

LS-MOVNS 

full 

LS-

MOVNS 

50X5 0.0242 0.0235 0.0239 

100x10 0.0435 0.0449 0.0392 

200x20 0.0231 0.0247 0.019 

4. Conclusion  

Finally, the experimental findings show that the proposed LS-MOVNS method, especially in adaptable neighbourhood sequence choice 

& partial neighbourhood evaluation improvement functions. Inverted Generational Distance (IGD) is more accurate for LS-MOVNS than 

randomized selection and complete neighbourhood search, especially when issue size rises. In addition to improving convergence, the 

adaptive technique maintains solution diversity & reduces computation cost. The ability to dynamically direct local searches according to 

performance history & concentrate computational resources towards probable solution space areas is extremely valuable. Since it 

balances exploration and exploitation, LS-MOVNS is stable and scalable for complicated multi-objective scheduling problems involving 

sequence-dependent setup periods. 
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