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Abstract 

This research consists of various features of 5G networks; the vision for 6G networks promises significant advancements, including 

ultra-high data rates, sub-millisecond latency, highly intelligent network operations, and exceptional device interconnectivity, among 

others.  Artificial Intelligence (AI) meets these requirements, which act as a fundamental base in self-organising and proactive adaptive 

network management. In the scope of this paper, AI integration with core 6G network functions is considered, including AI techniques 

such as machine learning, deep learning, federated learning, and reinforcement learning. Focus is on the AI-driven optimisation of 

spectrum utilisation, user experience, traffic pattern prediction, dynamic network slicing, robust QoS, and responsive QoS retention. 

Advancing edge computing, reconfigurable intelligent surfaces (RIS), and digital twins are also discussed. The study also discusses the 

lack of AI governance in 6G infrastructure, which includes data privacy, transparency of the algorithms, energy expenses, and global 

standardisation. This research focus reveals the highlights of the primary gaps in design and governance rationale that emerge through 

the lack of AI-integrated structural frameworks, resigns through the absence of a designed fabric needed to supplant the transcending 

potential of 6G enabled autonomous communication systems AI will irrevocably purge and define the naivety behind detonating the 

boundless potential AI entrenched paradigms will deliver. 

 
Keywords: 6G Communication, Network Optimisation, Machine Learning, Deep Learning, Edge Intelligence.  

1. Introduction 

This paper contains the high-speed, low-latency, and data-centric capabilities of 5G technology, following the 1G analogue voice 

systems, due to the advancement of mobile communication technologies [2]. 5G offers a substantial advancement; however, the ever-

growing demand from IoE (Internet of Everything), immersive XR (Extended Reality), autonomous systems, and real-time industrial 

automation are already eager to outstrip the current alongside supporting structures of today’s networks [4]. These constraints are driving 

the advancements towards ‘the communications of the future’ – 6G – which is expected to provide ultra-low latency (sub-millisecond), 

extreme data rates (Tbps level), ubiquitous intelligence, and global hyper-connectivity [5]. 6G differs from its predecessors in that it is 

envisioned as AI-native, meaning artificial intelligence will pervade every layer of the network, from service orchestration to the physical 

layer, and, as such, unlike the previous generations where AI was used as an ancillary resource, it will be deeply embedded. The 

networked self-optimising, self-healing, and adaptive capabilities to the environment and user context changes are upgraded with AI 

techniques to incorporate machine learning, deep learning, federated learning, and reinforcement learning. 

The challenges of increasing complexity, dynamic spectrum utilisation, and real-time network operations in massive-scale systems are 

expected to be met using an AI-centric approach [7]. In this regard, this research aims to understand the role of AI in optimising 6G 

communications concerning spectrum resource management, maintenance activities, traffic management, routing, and resource allocation 

on a proactive basis [8]. The integration of AI with 6G technology is expected to not only improve performance but also enable self-

sustaining and self-governing ecosystems of communication [9]. The integration of AI and 6G is going to be essential for developing 

novel services and transforming industries, as it would act as the building block of the future digital infrastructure [11]. 
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2. Literature Review 

The convergence of Artificial Intelligence (AI) with next-generation wireless networks is one of the most intensively researched areas, 

both academically and industrially. Many studies have explored the gaps within 5G and the ways AI can help fulfil the needs of 6G 

communication systems, AI-driven automation and smart self-organising networks for 5G, and 6G capabilities. This review aims to 

cover the most important works focused on AI-based management, optimisation, and architecture of beyond 5G and 6G networks. 

Examples of works that studied resource management automation through RL and DRL. Real-time, dynamic policy development for 

resource allocation (spectrum, power, and load balancing) is a hallmark of RL methods and radically outperforms static algorithms in 

high-density environments [10]. Pioneered the use of federated learning FL for edge AI model training without the transfer of raw data to 

central servers, offering a privacy-preserving method for model training [1]. FL enables the leap towards decentralised intelligence, a 

fundamental requirement for 6G edge computing frameworks—crucial for data privacy and latency reduction. AI accentuated edge 

computing, and the growing demand for low-latency, high-bandwidth services transformed work as they supported AI-native networks, 

where AI permeates every protocol stack. Informed resource and service orchestration is achieved with the support of automatic 

evolution self-learning algorithms, context-awareness, and semantic data processing. Use of digital twins and network digital maps is 

also suggested to simulate and optimise network behaviour [3]. Studied the Role of Integrated Reconfigurable Intelligent Surfaces (RIS) 

and Edge AI in 6G and demonstrated AI-driven real-time beamforming, channel estimation, and adaptive environment controlfurther 

enhancing energy efficiency, coverage, and system throughput [6]. Along with promising results, some works also point out unresolved 

issues. Data bias, absence of domain-specific standard datasets for training AI models adapted for wireless networks, edge computational 

limits, entrenched biases, and trust issues with AI models are especially prominent obstacles [12]. In addition, other researchers are yet to 

validate these strategies in practical 6G testing environments [13]. 

3. Methods 

3.1. Architecture of 6G Communication Network  

 

Fig 1. Architecture of 6G Communication Network 

To interpret Figure 1 describes the relationship of multiple 6G use cases with network architecture enablers via an LLM (Large Language 

Model) Controller. It emphasises significant use cases like RtC-GPT (Robot to Cobots), Transforming Embedded Networks to Trusted 

Embedded Networks (TEN-GPT), Hyperconnected Resilient Networks (HRN-GPT), Green-GPT focused on eco-friendly initiatives, 

Massive Twinning (MT-GPT), and Telepresence (TP-GPT), among others. All these use cases are linked by the LLM Controller. The 

use cases are reinforced by a cross-referenced set of network architecture enablers, including Security and Privacy (S&P-GPT), Radio 

Access (RA-GPT), Local Edge Cloud (LEC-GPT), Core Network (Core-GPT), Cognitive Network Management (CNM-GPT), and 

Digital Value Platform (DVP-GPT). This framework illustrates the collaborative impact of 6G technologies with AI models—

particularly how GPTs enhance automation and self-management capabilities—with the LLM Controller coordinating use case and 

enabler interactions. 
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3.2. Proposed Architecture 

 

Fig 2.Proposed Architecture 

To evaluate the Fig. 2 AI-based structure for performing predictive analytics and dynamic routing in network management. The system 

functions through interconnected blocks that process data and make intelligent network routing decisions based on the available real-time 

and historical data. Here's a breakdown of the workflow: Data Collection Block: Gathers existing real-time data related to the state of the 

network and historical data, which will be processed further. SP-LSTM-based Predictive Analytics Block: Analyses historical data and 

constructs a model to predict future network conditions using SP-LSTM models. Predicted Network Conditions Block: Outputs network 

states or conditions as network states, providing insight into how the network will behave in the future. RL-based Dynamic Routing 

Block: Uses Reinforcement Learning (RL) to make the optimal routing decision based on predicted network conditions. This block 

centres on changing the policies of routing policies for better performance in the network. Routing Policy Block: The block takes the 

output from the dynamic routing block to create the proper optimal routing policy, which makes sure that the movement of information 

within the system is done in the best way possible. The Network Management Block: finally, the Network Management Block executes 

and maintains the selected routing policy, which allows the network to function following an optimised policy dynamically. In essence, 

the structure employs real-time data alongside information accumulated over time for highly sophisticated predictive and reinforcement 

learning algorithms to adaptively refine routing decisions, making the framework fit for steeply agile networks as those anticipated for 

6G. 

4. Results and Discussion 

Table 1. Performance comparison for various metric analyses 

Technique Accuracy F1 Score Precision Recall Sensitivity 

Centralized DL 88.2 0.85 0.87 0.83 0.83 

Edge-based RL 91.5 0.89 0.91 0.88 0.88 

FL 92.7 0.91 0.92 0.91 0.91 

DRL 95.1 0.94 0.95 0.94 0.94 

5G Baseline 84.5 0.80 0.81 0.79 0.79 

 

Fig 3. Comparison of various Metric Analyses 

To interpret Table 1 and Fig. 3, evaluating the performance of the methods based on the AI-driven approaches toward 6G network 

optimisation showcases unique differences from metric to metric scale. In complex and dynamic 6G networks, Deep Reinforcement 

Learning (DRL) outstrips everyone with 95.1% accuracy, 0.94 F1 score, 0.95 precision, 0.94 recall, and 0.94 sensitivity. Privacy-

sensitive and distributed environments are best served by Federated Learning (FL), which follows closely with 92.7% accuracy and 0.91 

F1 score. RL edge-based also makes commendable strides with 91.5% accuracy and 0.89 F1 score for real-time applications. Centralised 
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Deep Learning (DL) performs well in static environments with 88.2% accuracy and 0.85 F1 score, but lacks the 6G flexibility. 5G 

Baseline lags with 84.5% accuracy and 0.80 F1 score, evidencing the failing capability of 6G evolving requirements. 

5. Conclusion 

The article "Beyond 5G: Exploring AI-Driven Network Optimisation for 6G Communications" discusses how AI will influence future 

wireless communication networks.  The evolution of 6G is AI-driven, which allows for smarter and more adaptive networks in response 

to the ever-increasing need for high-speed data transfer, low latency, and reliable connectivity. Optimisation techniques will allow 

resource allocation, spectrum management, and network configuration to be automated. The performance and efficiency of 6G networks 

will be further enhanced with the integration of AI, which will not only boost network capacity and service coverage but also enable new 

applications such as real-time holographic communications, advanced Internet of Things (IoT) systems, ultra-reliable service 

communications with low latency, and help in building an intelligent world. 
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