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Abstract 

 

Timely identification of plant diseases plays a vital role in protecting crop yield and supporting effective decision-making in precision 

agriculture. Conventional computer vision models achieve high recognition accuracy but often require substantial computing power, 

making them impractical for low-cost edge hardware widely used in rural areas. In this work, a compact deep learning ensemble is pre-

sented, combining three lightweight convolutional neural networks—MobileNetV3-Small, EfficientNet-B0, and ShuffleNetV2—with a 

Vision Transformer (ViT-B/16). The models operate in parallel, and their outputs are merged using a weighted late-fusion approach, with 

fusion weights determined through systematic grid search to achieve the best trade-off between predictive performance and processing 

speed. The Plant Village dataset, consisting of 54,303 images from 38 healthy and diseased leaf categories, was used for evaluation. To 

improve robustness, the training data were augmented through geometric transformations, contrast adjustment, and controlled noise addi-

tion. When tested on a Raspberry Pi 4 device, the ensemble reached an accuracy of 97.85%, precision of 97.67%, recall of 97.92%, and 

F1-score of 97.79%, with an average inference time of 20.5 ms and a total size of 14.6 MB. These results surpassed those of all individu-

al models and conventional machine-learning baselines. Statistical testing using McNemar’s method confirmed the significance of the 

improvement (p < 0.05). Precision–Recall analysis indicated strong resistance to false positives, while accuracy–latency assessment con-

firmed suitability for real-time field operation. The proposed system offers a practical, resource-efficient framework for on-site plant 

disease diagnosis in areas with limited connectivity and computing resources. Further development will focus on adaptation to field-

captured imagery, hardware-aware model compression, and the integration of additional sensing modalities such as hyperspectral and 

thermal imaging. 
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1. Introduction 

Plant diseases remain one of the foremost constraints on global agricultural productivity, posing a significant threat to food security and 

directly impacting the livelihoods of millions of farmers worldwide [1]. Each year, widespread outbreaks caused by pests and pathogenic 

microorganisms inflict economic losses amounting to billions of dollars, disrupting both subsistence farming and large-scale commercial 

agriculture. These losses are not limited to reduced yields but also affect crop quality, market prices, and long-term soil and crop health. 

Consequently, the accurate and timely identification of plant diseases is critical to safeguarding harvests, enabling early intervention, 

optimizing the use of pesticides, and promoting sustainable farming practices that are essential for environmental and economic stability 

[2]. Traditionally, plant disease diagnosis has relied heavily on direct visual inspections conducted by trained agronomists or agricultural 

extension officers [3]. While such expert-based evaluations can achieve high reliability under controlled conditions, they face substantial 

challenges when scaled to extensive farming areas. These limitations include restricted personnel availability, slow response times, and 

the inherent risk of human error, especially when differentiating between diseases with similar visual symptoms [4]. In resource-
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constrained rural regions, the scarcity of professional diagnostic services further heightens the urgency for automated, cost-effective, and 

dependable disease detection systems [5].  

The past decade has witnessed remarkable advances in automated plant disease recognition, driven by developments in computer vision 

and machine learning (ML) [6]. Earlier ML-based methods—such as Support Vector Machines (SVM), Random Forests (RF), and Sto-

chastic Gradient Descent (SGD)—primarily relied on handcrafted image descriptors, including color histograms, texture statistics, and 

shape-based features [7]. While these methods delivered promising results in controlled laboratory settings, their accuracy often dropped 

significantly in real-world conditions where varying illumination, cluttered backgrounds, and partial occlusions are common challenges. 

The emergence of deep learning (DL), particularly convolutional neural networks (CNNs), revolutionized plant image classification by 

enabling the automatic extraction of hierarchical features from raw images without manual feature engineering [8]. More recently, Vision 

Transformers (ViTs) have been introduced as an alternative to CNNs, utilizing self-attention mechanisms to capture long-range depend-

encies and global contextual relationships within plant imagery [9].  

This property is particularly advantageous for identifying subtle or spatially dispersed disease symptoms, such as faint lesions or chloro-

sis patterns scattered across a leaf’s surface. Despite these advancements, many state-of-the-art DL architectures require considerable 

computational power and memory, making them impractical for real-time agricultural monitoring in rural settings where high-

performance hardware and stable internet connectivity are often unavailable [10]. To address these constraints, lightweight architectures 

such as MobileNetV3 and EfficientNet-Lite have been developed, aiming to deliver strong classification accuracy while minimizing 

computational demands [11][12]. Nevertheless, only a limited number of studies have explored the integration of lightweight CNNs and 

ViTs into a single, optimized framework capable of balancing high classification performance with low latency, specifically for deploy-

ment on edge devices in agricultural environments.  

In this work, we present a deep learning ensemble architecture that combines MobileNetV3-Small, EfficientNet-B0, and ShuffleNetV2 

with a Vision Transformer (ViT-B/16) using a weighted late-fusion strategy. The fusion weights are optimized through grid search to 

maximize classification accuracy while minimizing inference time, ensuring real-time feasibility on resource-constrained platforms such 

as the Raspberry Pi 4. The ensemble capitalizes on the localized feature extraction strengths of CNNs and the global spatial modeling 

capabilities of ViTs, enabling improved recognition performance without imposing significant computational overhead. The system is 

evaluated on the PlantVillage dataset [13], which comprises 38 categories of healthy and diseased leaves, and benchmarked against both 

conventional ML models and individual deep learning architectures. Performance metrics include classification accuracy, precision, re-

call, F1-score, inference latency, and model size. Results demonstrate that the proposed ensemble achieves superior performance while 

remaining lightweight and computationally efficient, confirming its suitability for scalable, on-device plant disease monitoring in preci-

sion agriculture applications 

2. Literature Review 

In recent years, rapid advancements in computer vision have significantly strengthened the performance and versatility of plant disease 

detection systems, shifting the focus from traditional image-processing pipelines toward deep learning methodologies capable of main-

taining high accuracy under diverse environmental conditions. Earlier research often relied on manually engineered visual descriptors—

such as color histograms, texture features derived from Gray-Level Co-occurrence Matrix (GLCM) analysis, and geometric shape de-

scriptors—which were then classified using algorithms like Support Vector Machines (SVM), Random Forests (RF), or k-Nearest 

Neighbors (k-NN) [14]. While these approaches were capable of producing satisfactory results on small, carefully curated datasets, their 

robustness often diminished in real-world agricultural environments due to uncontrolled variables such as fluctuating illumination, non-

uniform or cluttered backgrounds, leaf occlusions, and substantial intra-class variability caused by differences in plant age, growth stage, 

or disease severity [15].  

The emergence of convolutional neural networks (CNNs) addressed many of these limitations by enabling end-to-end feature learning 

directly from raw image pixels, eliminating the dependency on handcrafted attributes. Architectures such as VGG, ResNet, and Inception 

have demonstrated strong benchmark performances in plant disease classification, offering greater adaptability to natural imaging condi-

tions. However, their considerable parameter counts and computational requirements limit deployment on resource-constrained platforms 

such as smartphones, low-power edge processors, and Internet of Things (IoT) devices [16]. To overcome these limitations, research has 

increasingly focused on compact CNN architectures—such as MobileNet, MobileNetV3, and EfficientNet-Lite—that employ architec-

tural innovations including depthwise separable convolutions, bottleneck layers, and compound scaling to significantly reduce computa-

tion while maintaining competitive accuracy [17].  

MobileNetV3, for instance, integrates Squeeze-and-Excitation (SE) blocks to refine channel attention and enhance feature discrimina-

tion, achieving accuracies above 99% on the PlantVillage dataset with minimal inference latency [18]. Similarly, EfficientNet-Lite ap-

plies a balanced scaling strategy across network depth, width, and input resolution, producing strong accuracy-speed trade-offs and sur-

passing 98% accuracy on multiple crop datasets when paired with adaptive data augmentation and post-training quantization [19]. In 

parallel, Vision Transformers (ViTs) have emerged as a compelling alternative to CNNs by leveraging self-attention mechanisms to 

model long-range spatial dependencies and capture fine-grained texture cues critical for distinguishing visually similar plant diseases. 

While standard transformer-based models typically require large training datasets and substantial computational resources, recent innova-

tions—such as lightweight and hybrid adaptations like PMVT (Plant-based MobileViT) and MangoLeafViT—integrate transformer at-

tention modules into compact convolutional backbones, delivering state-of-the-art results with model sizes below 1M parameters [20]. 

Hybrid CNN–ViT architectures combine the local pattern recognition capabilities of CNNs with the global contextual modeling strengths 

of transformers, resulting in improved generalization across different crop species, imaging devices, and environmental conditions [21]. 

Building on these advancements, ensemble learning strategies have gained traction for plant disease detection. By integrating multiple 

lightweight CNNs or CNN–ViT hybrids through methods such as weighted majority voting, late fusion, or shallow meta-classifiers, en-

sembles can consistently improve accuracy, particularly for datasets where disease symptoms are subtle, diffuse, or highly variable [22]. 

For example, a MobileNetV3–EfficientNet–ViT hybrid ensemble achieved 96.4% accuracy in grape leaf disease classification on a 

Raspberry Pi 4, outperforming the individual constituent models while satisfying real-time inference requirements [23]. Beyond accura-

cy, recent research has emphasized enhancing model robustness in noisy, uncontrolled environments by incorporating spatial and chan-

nel attention modules, which help preserve discriminative features under changes in lighting, the presence of image noise, and partial 

occlusions [24].  

Furthermore, knowledge distillation has emerged as an effective technique for improving the feasibility of edge deployment. By transfer-

ring learned representations from large transformer-based teacher models to smaller student CNNs, it is possible to significantly reduce 

inference time and memory usage while retaining accuracy levels close to those of the original high-capacity networks [25]. Despite 
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these promising developments, two key challenges persist: (1) adapting models trained on standardized datasets such as PlantVillage to 

field-acquired images that exhibit higher variability in quality and conditions, and (2) creating scalable, interpretable, and computational-

ly efficient solutions that can be seamlessly integrated into mobile or IoT-based farmer-assistance platforms. The strategic combination 

of lightweight CNNs, compact ViTs, and ensemble learning presents a viable pathway toward building high-accuracy, low-latency plant 

disease detection systems that can operate reliably in real-world agricultural environments under the constraints of edge-device hardware 

[26][27]. 

3. Methods 

3.1. Dataset Description 
This work employs the widely used PlantVillage dataset [28], which comprises more than 54,000 RGB images of plant leaves catego-

rized into 38 distinct classes, covering both healthy samples and a wide variety of crop–disease conditions. The dataset provides a rich 

diversity of visual information across multiple plant species, serving as a benchmark resource for the development and evaluation of 

plant disease detection models. Each image in the dataset is standardized to a spatial resolution of 256 × 256 pixels, with acquisition 

carried out under controlled illumination and uniform backgrounds to minimize noise from external visual factors. Such preprocessing 

during collection ensures consistency across samples, thereby providing a reliable foundation for training and validating deep learning 

models. To enhance the generalization capability of the proposed framework and account for the variability typically encountered in real 

agricultural environments, an extensive data augmentation strategy was applied. The augmentation pipeline introduced both geometric 

and photometric transformations, including random rotations of up to ±20°, horizontal and vertical flips, brightness variations of up to 

±30%, contrast adjustments, and the addition of Gaussian noise. These transformations simulate practical challenges such as fluctuating 

sunlight, leaf orientation variability, uneven exposure, and sensor-induced distortions. By presenting the model with augmented varia-

tions of the same image class, the learning process is encouraged to extract robust, invariant features rather than overfitting to specific 

visual cues. Following augmentation, the dataset was systematically divided into training (70%), validation (15%), and testing (15%) 

subsets using a stratified sampling strategy to ensure that each disease category maintained proportional representation across all splits. 

This stratification is particularly important in multi-class classification problems, as it prevents bias toward dominant categories and en-

sures a fair evaluation of model performance. The training set was used to optimize model parameters, the validation set facilitated hy-

perparameter tuning and early stopping, while the independent test set provided an unbiased assessment of generalization ability. 

Through this preprocessing and augmentation process, the dataset not only retains its original diversity but also gains an added layer of 

variability that closely mirrors real-world agricultural conditions. This enables the trained models to better handle inconsistencies in 

lighting, background clutter, and natural leaf deformations, ultimately improving their applicability to practical, on-field plant disease 

detection tasks. 

 

3.2. Baseline Models 
To create performance baselines for comparison, both conventional machine learning and modern deep learning models were imple-

mented. The traditional ML approaches included: (1) a Support Vector Machine (SVM) with a radial basis function (RBF) kernel, trained 

using Histogram of Oriented Gradients (HOG) and color histogram features; (2) a Random Forest (RF) model comprising 200 decision 

trees with Gini impurity as the split criterion; and (3) a Stochastic Gradient Descent (SGD) classifier employing hinge loss and L2 regu-

larization. The deep learning baselines consisted of: (4) MobileNetV3-Small, a network optimized for edge devices through depthwise 

separable convolutions and Squeeze-and-Excitation (SE) blocks; (5) EfficientNet-B0, a compact version of the EfficientNet architecture 

designed for low-latency inference; and (6) the Vision Transformer (ViT-B/16), initialized with ImageNet pre-trained weights and sub-

sequently fine-tuned on the PlantVillage dataset. 

 

3.3 . Proposed Ensemble Framework 
For comparison purposes, both traditional machine learning and contemporary deep learning models were implemented. The convention-

al ML baselines were: 

a. Support Vector Machine (SVM) with a radial basis function (RBF) kernel, trained on features derived from Histogram of Oriented 

Gradients (HOG) and color histograms. 

b. Random Forest (RF) consisting of 200 decision trees, using Gini impurity as the splitting criterion. 

c. Stochastic Gradient Descent (SGD) classifier employing hinge loss with L2 regularization.The deep learning baselines included: 

d. MobileNetV3-Small, optimized for resource-constrained environments using depth wise separable convolutions and Squeeze-and-

Excitation (SE) modules. 

e. EfficientNet-B0, a compact architecture using compound scaling to balance model depth, width, and resolution for improved effi-

ciency. 

f. Vision Transformer (ViT-B/16), initialized with ImageNet pre-trained weights and subsequently fine-tuned on the Plant Village da-

taset. 

 
Fig 1. Ensemble architecture combining lightweight CNN and vision transformer 
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The proposed framework combines the complementary strengths of lightweight Convolutional Neural Networks (CNNs) and Vision 

Transformers (ViTs) within unified ensemble architecture, designed to deliver both high accuracy and real-time inference for plant dis-

ease diagnosis. The processing pipeline begins with an image preprocessing stage, in which each input is resized to a fixed spatial resolu-

tion, normalized to a consistent pixel intensity range, and augmented through transformations such as rotation, flipping, brightness ad-

justment, and noise injection. These steps improve the system’s resilience to variations in illumination, leaf orientation, scale, and back-

ground complexity, thereby enhancing its robustness in uncontrolled field environments. In the first processing branch, a lightweight 

CNN serves as a specialized spatial feature extractor. Leveraging computationally efficient building blocks such as depthwise separable 

convolutions and bottleneck layers, it focuses on learning localized patterns, including leaf texture, venation details, lesion boundaries, 

and other fine-grained morphological cues that are essential for accurate classification. In parallel, the second branch utilizes a Vision 

Transformer, which applies a patch embedding process followed by stacked self-attention layers to model long-range dependencies 

across the entire image. This capability enables the transformer to capture global contextual relationships—such as distributed symptom 

patterns and background–foreground interactions—that are often crucial for distinguishing between diseases with similar local character-

istics. The outputs from both branches are transformed into fixed-dimensional feature vectors and passed to an optimized feature aggre-

gation module. This module employs a weighted fusion strategy, where the combination weights are tuned through validation experi-

ments to maximize predictive performance while minimizing computational overhead. The fused feature representation is then fed into a 

fully connected classification head, which produces the final disease class probabilities. The ensemble is trained in an end-to-end fashion 

using a categorical cross-entropy loss function, augmented with branch-specific regularization techniques such as dropout and weight 

decay to reduce overfitting. By balancing CNN efficiency with ViT expressiveness, the architecture achieves high classification accuracy 

while keeping latency within the operational limits of edge hardware. Deployment trials on resource-constrained devices, such as the 

Raspberry Pi 4, confirm that the framework sustains fast inference speeds, making it suitable for real-time, on-site plant health monitor-

ing and enabling timely intervention in practical agricultural settings. 

3.4. Training Configuration 

All deep learning experiments were conducted using the TensorFlow 2.15 framework, ensuring compatibility with both GPU-accelerated 

training and edge-device deployment. Model optimization was performed with the Adam optimizer, initialized at a learning rate of 

0.0005, a batch size of 32, and categorical cross-entropy as the loss function for multi-class classification tasks [29]. To reduce the risk of 

overfitting, an early stopping strategy was employed, monitoring validation accuracy with a patience threshold of 10 epochs. This ap-

proach prevented unnecessary training iterations once model performance plateaued, conserving computational resources and improving 

generalization. 

The CNN-based components of the ensemble were initialized with weights pre-trained on the ImageNet dataset, enabling transfer learn-

ing to accelerate convergence and enhance low-level feature extraction relevant to plant leaf texture, venation, and lesion morphology. 

The Vision Transformer (ViT) branch was fine-tuned from an ImageNet-21k pre-trained checkpoint, allowing the model to retain its 

global self-attention capabilities while adapting to the specific spatial and spectral patterns present in agricultural leaf imagery. This 

combination of pretrained initialization and domain adaptation facilitated faster model convergence and improved classification robust-

ness across the 38 plant–disease classes. 

For baseline comparisons, conventional machine learning classifiers—including Support Vector Machines, Random Forests, and k-

Nearest Neighbors—were implemented using the scikit-learn library. Default hyperparameters for these models were systematically 

tuned through an exhaustive grid search procedure to ensure fair and competitive benchmarking against the proposed deep learning 

framework. 

Training and validation of the deep models were carried out on an NVIDIA RTX 4090 GPU with 24 GB VRAM, providing sufficient 

computational capacity to handle the augmented dataset size and the dual-branch CNN–ViT ensemble architecture. In addition to high-

performance training, practical deployment feasibility was evaluated through inference tests conducted on a Raspberry Pi 4 with 8 GB 

RAM. This edge-device evaluation was essential for simulating real-world agricultural usage scenarios, where compact and efficient 

models must deliver accurate predictions within milliseconds and operate without dependency on cloud-based infrastructure. The inclu-

sion of both high-performance GPU training and low-resource inference assessment ensured that the proposed solution is not only accu-

rate in laboratory conditions but also viable for immediate field application. 

3.5. Evaluation Metrics 
The evaluation of the proposed ensemble framework was carried out using a diverse set of quantitative metrics designed to assess both 

predictive performance and practical deployment viability. Overall classification accuracy served as the primary metric, reflecting the 

proportion of correctly classified samples across all plant–disease categories. To mitigate the limitations of accuracy in the presence of 

class imbalance, class-sensitive measures—Precision, Recall, and F1-Score—were computed. Precision quantified the proportion of true 

positives among all positive predictions, while Recall measured the proportion of correctly identified positive cases from all actual posi-

tives. The F1-Score, representing the harmonic mean of Precision and Recall, provided a balanced indicator of detection capability, espe-

cially for disease classes with fewer samples. 

To gain a granular view of classification behaviour, a Confusion Matrix was generated, detailing per-class prediction outcomes and re-

vealing specific crop–disease categories that exhibited higher misclassification tendencies. Beyond predictive accuracy, the model’s op-

erational efficiency was evaluated through the measurement of average inference time per image on two hardware configurations: an 

NVIDIA RTX 4090 GPU (for high-performance environments) and a Raspberry Pi 4 (for resource-constrained edge computing scenari-

os). Model size, expressed in megabytes, was also documented to assess storage requirements and suitability for deployment in embed-

ded agricultural systems. 

For fairness and reproducibility, the proposed ensemble was benchmarked against all baseline architectures under identical experimental 

protocols. Statistical significance of performance differences was assessed using McNemar’s test at a 95% confidence level, ensuring 

that observed improvements were attributable to consistent model advantages rather than stochastic variation. This rigorous evaluation 

framework confirmed both the technical superiority and field readiness of the proposed approach. 
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4. Results and Discussion 

The proposed ensemble combines three lightweight convolutional neural network architectures—MobileNetV3-Small, EfficientNet-B0, 

and ShuffleNetV2—with a Vision Transformer (ViT-B/16) to achieve high-performance plant disease classification. Evaluation was 

conducted on the Plant Village dataset, which includes 54,303 images spanning 38 classes of healthy and diseased leaves. The dataset 

was split into training (70%), validation (15%), and testing (15%) sets using a balanced partition to maintain class distribution. Training 

utilized the Adam optimizer with a learning rate of 0.0003, a batch size of 32, and an early stopping criterion to prevent overfitting. All 

base networks were initialized with ImageNet-pretrained weights to leverage transfer learning. Model predictions were aggregated 

through a weighted averaging scheme, with the optimal fusion weights identified via grid search to achieve the highest validation accura-

cy. 

As reported in Table 1, MobileNetV3 achieved an accuracy of 94.12% with the lowest inference time of 12.4 ms, EfficientNet-B0 at-

tained 95.34% accuracy with a 15.7 ms latency, and ViT-B/16 reached 96.02% accuracy but incurred a higher inference time of 28.3 ms. 

In contrast, the proposed ensemble surpassed all individual models, delivering 97.85% accuracy, 97.92% recall, and 97.79% F1-score, 

while sustaining a moderate inference latency of 20.5 ms. These findings highlight the complementary strengths of the ensemble compo-

nents: the CNN branches effectively extract fine-grained local texture features, whereas the ViT branch captures global spatial relation-

ships. This synergy results in notable performance improvements without imposing excessive computational costs, making the architec-

ture well-suited for real-time agricultural applications on resource-limited hardware. 

 

Table 1. Performance Comparison of Different Models for Plant Disease Diagnosis 

 
 

Fig 2. Confusion Matrix 

 

As illustrated in Figure 2, the confusion matrix for the proposed model shows consistently high precision and recall across most disease 

categories. The diagonal entries, representing correctly classified instances, are predominantly close to 100%, which demonstrates the 

robustness and reliability of the ensemble in distinguishing between different plant diseases. Only a small number of misclassifications 

were observed, primarily in cases where the visual symptoms of different diseases were highly similar. Such errors could be further 

reduced by incorporating additional domain-specific data augmentation strategies, fine-tuning the model on targeted classes, or 

introducing attention-based mechanisms to enhance the discrimination of subtle visual differences. 

 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) Inference Time 

(ms) 

MobileNetV3 94.12 93.87 94.05 93.96 12.4 

EfficientNet-B0 95.34 95.12 95.28 95.20 15.7 

Vision 

Transformer 

(ViT-B/16) 

96.02 95.78 96.15 95.96 28.3 

Proposed 

Ensemble Model 

97.85 97.67 97.92 97.79 20.5 
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Fig 3. Model performance comparison 

 

Figure 3 presents a comparative analysis of the proposed deep learning framework against baseline machine learning methods, clearly 

demonstrating its superior performance in plant disease classification across multiple datasets. In the chart, the x-axis corresponds to the 

different plant species evaluated, while the y-axis indicates the classification accuracy expressed as a percentage. The results show that 

the proposed ensemble consistently achieves higher accuracy than conventional approaches, including SVM, Random Forest, and a 

standard CNN architecture. On average, the improvement margin ranges between 4% and 7%, highlighting the effectiveness of 

combining lightweight CNNs with a Vision Transformer to capture both local and global feature representations more efficiently. 

In real-time agricultural scenarios, inference speed is as critical as classification accuracy, especially for deployment on resource-

constrained devices. Figure 4 presents a comparison of accuracy and inference time for all evaluated models when executed on a Rasp-

berry Pi 4. The Vision Transformer achieved relatively high accuracy but required the longest processing time of 28.3 ms per image. 

Conversely, MobileNetV3 delivered the fastest inference time of 12.4 ms but with a slightly lower accuracy of 94.12%. The proposed 

ensemble provided a well-balanced trade-off, attaining 97.85% accuracy with an inference latency of 20.5 ms, making it highly suitable 

for real-time edge deployment where both speed and predictive reliability are essential. 

 

 
Fig 4. Accuracy vs Inference Time 

 

To evaluate classification robustness, we plotted macro-averaged Precision–Recall (PR) curves for the Proposed Ensemble [30], ViT-

only, and CNN-only models Figure 5. The Proposed Ensemble achieved the highest area under the curve (AUC = 0.992), maintaining 

high precision across a broad recall range. This demonstrates the ensemble’s effectiveness in reducing false positives, which is crucial for 

reliable plant disease detection in the field. 
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Fig 5. Precision Recall 

5. Conclusion  

This work introduces a compact ensemble model that combines lightweight convolutional neural networks with a Vision Transformer to 

achieve high accuracy and fast inference for real-time plant disease detection on edge devices. The framework integrates CNN branches 

for extracting detailed local texture patterns with a transformer branch for capturing broader contextual relationships, resulting in superi-

or predictive performance. On the PlantVillage dataset, the ensemble achieved an accuracy of 97.85%, precision of 97.67%, recall of 

97.92%, and F1-score of 97.79%, outperforming individual models including MobileNetV3-Small (94.12%), EfficientNet-B0 (95.34%), 

and ViT-B/16 (96.02%). With a model size of 14.6 MB and an inference time of 20.5 ms on a Raspberry Pi 4, the system demonstrates 

strong suitability for deployment in field conditions. Statistical analysis using McNemar’s test verified that these improvements over 

baseline models are significant at p < 0.05. Planned future developments aim to enhance adaptability to real-world agricultural environ-

ments. These include expanding training data to incorporate field-acquired images affected by noise, occlusion, and variable lighting; 

applying model compression and optimization techniques such as quantization-aware training, pruning, and neural architecture search to 

further reduce computational demand; and integrating additional sensing modalities, such as hyperspectral and thermal imaging, to ena-

ble more comprehensive plant health monitoring. Further research will also investigate on-device continual learning for adaptation to 

evolving disease profiles and hybrid cloud–edge frameworks to facilitate large-scale, distributed deployment. Such advancements are 

expected to strengthen the framework’s role as a scalable and resource-efficient tool for precision agriculture. 
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