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Abstract 

 

Developing safety-critical systems (SCS) involves a systematic method for assuring and providing safety and dependability. 

Conventional approaches rely on expert intervention, which can introduce bias, cause delays, and promote inconsistency. This work 

proposes a model that enhances efficiency and accuracy by extracting safety functions from requirements specifications. The model is 

made up of three main steps: (1) preprocessing, which involves getting rid of stop words; (2) string selection and matching using a 

database of safety properties variables based on literature and expert knowledge; and (3) putting safety and non-safety functions into a 

structured safety function log. The model was trained and tested with the CGPA insulin pump and got a 94% F1 measure score, which 

means it was 91% accurate, 96% accurate, 92% precise, and 96% recall. This shows that it is good at making things clearer and less 

biased when finding functions for safety against failures, malfunctions, operational hazards, and inconsistencies in safety-critical 

specifications. All these enhancements contribute towards Sustainable Development Goal (SDG) 11: Sustainable Cities and 

Communities, aiming to develop safer, resilient, and sustainable infrastructure in safety-critical regions. 
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1. Introduction 

Safety-critical systems (SCSs) are those whose failure can have disastrous consequences, including loss of life, environmental 

degradation, and financial loss [1]–[3] SCSs run in numerous industries [4], including medical care, airlines, and nuclear power, in which 

dependability is a significant issue. As an instance, the CereLink ICP Monitor, a crucial device for regulating intracranial pressure in 

critical care, was recalled by the U.S. Food and Drug Administration (FDA) due to its inaccurate blood pressure readings. This device 

poses a high risk of infection, bleeding, and tissue trauma, as evidenced by at least 105 worldwide complaints and 68 Medical Device 

Reports (MDRs) received until August 24, 2022 [5]. Identifying safety functions in system development entails a range of roles, 

including domain experts, who validate and verify safety requirements [6]–[8] Domain expert use, however, involves some limitations 

[9]–[11], including expertise bias [12]–[14], time constraints [14]–[16], and issues of transparency [8], [10]. Researchers have explored 

the use of safety function models as an alternate method for identifying and managing safety requirements. 

Recent research identifies a persistent challenge in specifying requirements and defining safety functions for safety-critical systems. 

Martins & Gorschek [17] report a need for enhanced elicitation, analysis, and verification techniques for safety requirements, elicited 

through practitioner interviews in a range of industries. On the other hand, Wu et al. [18] introduce functional modeling as a tool for 

describing system solutions and identifying failures, but its application in safety and risk analysis is limited. Furthermore, Hendrix et al. 

[19] introduce model-based approaches for increased accuracy and verification of system safety analysis, with a specific consideration 

for complex software-intensive systems, providing a systemic model for identifying and minimizing potential danger. Nouri et al. [20] 

then investigate the use of large language models in automating the refinement and decomposition of requirements, specifically in the 

automotive industry, whose constant updating generates a recurring challenge. Meanwhile, Chen et al. [9] introduce a formal technique 

for increased efficiency through arming domain professionals with tools for verification, minimizing lengthy dialogue with formal 
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professionals. Nevertheless, in consideration of such improvements, expert consultation continues to have a key role in accuracy and 

uniformity in safety requirement verification. Ultimately, overcoming such a challenge necessitates an acceptance of the key role played 

by expertise in specifying safety functions and developing safety requirements. AI-powered automation, model-based techniques, and 

functional modeling facilitate safety and efficiency in systems analysis. However, their effectiveness depends on closing knowledge 

gaps, with extensive collaboration between experts and systematic safety methods for ensuring rigorous requirements verification and 

safety confirmation for complex systems. 

Building on the challenges of automating safety function modelling in requirement specifications, this paper proposes a safety model that 

uses a safety properties variables database that integrates and archives expert domain knowledge in a central repository, reducing the 

direct workload for experts while ensuring compliance with all regulatory requirements. The proposed model involves three phases: in 

the first, it removes any irrelevant words in the specification of a requirement; in the second, it analyzes terms via preprocessing to 

extract useful strings; and in the third, it creates a log of a document's safety function and discerns contrast between function types of 

both safety and non-safety. In a case study for a general patient-controlled analgesia pump, the result in comparing accuracy, precision, 

recall, and F-measures is examined. Recent studies have increasingly underpinned the imperative for well-designed databases of safety 

properties variables in a range of industries. Sheehan et al. [21] examined publicly available databases of patient safety and determined 

that most have not incorporated key capabilities for effective analysis for safety professionals and for data scientists, and consequently 

have little actual utility in practice. Similarly, Gupta et al. [22] emphasized industrially the imperative for a general-purpose database of 

values for thermodynamic and transport properties, a requirement for safe and reliable development of chemical processing. Projecting 

onto fire safety, McKinnon & Bellamy [23] documented the Fire Safety Research Institute Materials and Products database, providing 

material property and fire testing information for use in reliable modeling of fires. Together, previous studies make a strong case for a 

critical imperative for general-purpose, accessible, and well-designed databases of safety properties variables for enhancing analysis, 

verification, and modeling in a range of industries. 

Safety properties variables also make a major contribution towards requirements engineering and requirements analysis of safety-critical 

systems, to achieve dependability and prevention of failures. Describing such properties in requirements specifications, Maurya & 

Kumar [24] note, it adds to the greater dependability of a system. Following the same direction, V. Nguyen Tran et al. [25] present 

integrated requirements engineering for software safety for resisting software failure in a safety-critical environment. Jensen and Tumer 

[26] present a "safety function" for identifying a system's safety property, integrating with performance functions, and providing for 

critical events for investigation. Following a complementary direction, Hamidi et al. [27] present a model for safety-related function 

measurement in terms of probability, with architectural decisions, and comparing safety and availability measurements in view. Thus, 

these works substantiate the major contribution of safety properties variables towards greater resilience of a system and resisting risk in a 

variety of safety-critical environments. 

Furthermore, this paper has been focusing on safety function identification in requirements specification. The paper has been structured 

such that Section 2 explains the model's development, Section 3 presents the experimental evaluation, and Section 4 concludes the paper 

and suggests future research. 

2. Methods 

The development of the proposed model is represented in Figure 1. Figure 1 shows a methodology for developing a safety function 

model for requirement specification in safety-critical systems. The activity is initiated with a problem statement, scope, and objectives 

determination through a review of the literature. Next, a development of a safety properties variables database is derived through expert 

domain expertise and review of the literature, and it will be discussed in the following section. The database is then used in the safety 

function model process. The model is subjected to thorough testing, evaluation, and analysis for its effectiveness. If the output is 

acceptance, then the activity ends; else, a refinement of the model and re-evaluation is conducted till an acceptable output is achieved. 

That iterative manner ensures developing a strong and reliable Safety Function Model for requirements specification. 

 

Fig 1. Research Methodology 

2.1. Development of Safety Properties Variable Database 
Figure 2 portrays a process for developing a variable database for safety properties variables using a combination of SLR and expert 

domain knowledge. SLR identifies the variable for safety properties through a review of scientific, peer-reviewed, and published studies 

with high academic standards. SLR results have been presented in [28]. By mixing both approaches, deeper, reliable, and scientific 

integrity in the derived safety properties variables databases is attained. On the one hand, expert domain expertise can also be utilized to 

determine safety property variables through professionals' field experiences and expertise. By combining expert estimation with data 

techniques, a larger and richer pool of safety property variables is constructed. 
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Fig 2. Develop Safety Properties Variables Database 

 

 Expert knowledge plays a significant role in discovering and confirming safety properties in safety-critical domains. Fazl Barez et al. 

[29] utilized expert knowledge in first-order logic for its application in reinforcement learning, providing safer exploration and increased 

efficiency in samples. In a similar direction, Xiaohong Chen et al. [9] developed SafeNL, a system that helps expert professionals in a 

specific field verify compliance with requirements for safety through formality and ease of collaboration with formal professionals. In 

materials science, Yue Liu et al. [30] developed the DML-FSdek method, which employs expert knowledge in weighted scoring for 

feature selection in predicting properties in materials, with an improvement in feature selection for property prediction in materials. For 

critical system evaluation of safety, Ievgen Babeshko et al. [31] developed XMECA and EUMECA techniques, with a combination of 

expert judgments and uncertainty for increased dependability in safety analysis. Together, these techniques present a significant role for 

expert knowledge in increased efficiency, compliance, and trust in security evaluation in a range of industries. 

2.2. Safety Function Model 
Figure 3 shows how the process of separating between safety and non-safety functions is performed in the proposed safety function 

model. Step 1: Stop word removal is initiated with processing, filtering out unnecessary words. Stop word removal adds accuracy 

because irrelevant terms are not considered, and this creates a cleaner keyword search. This adds safety property variable analysis and 

classifies safety functions more effectively. 

In Step 2, the requirements specification is processed to extract information pertaining to safety. First, a relevant field of a domain is 

selected to convey contextual pertinency for requirements analysis for safety. In Step 2.2, the processed requirements text is then 

compared with a safety properties variables database. In this process, each requirement will be carefully checked to see if its key term 

aligns with predefined safety property variables. In case a key term is detected, a requirement is classified as a safety function; otherwise, 

it is considered a non-safety function. If a match is found (YES), then a safety function is documented in Step 3: Safety Function Log for 

further checking and documentation. In case no match is found (NO), then a non-safety function is stored in a file. The output of these 

steps is a list of found safety functions and non-safety functions. 

 

Fig 3. Proposed Safety Function Model 

2.3. Evaluation of Evaluates Purpose Model 
This model uses a case study and a structured experimental setup. This makes sure that the model is thoroughly evaluated for how well it 

finds and groups safety property variables according to the requirements. 
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2.3.1. Case Study 
 Figure 4 illustrates a GPCA system in a hospital setting for the administration of drugs [32][33]. The patient orders a bolus, processed via 

GPCA, delivering a flow of drugs through a needle. Prescription information and infusion orders entered by the clinician receive 

notification information from GPCA. GPCA talks to the Hospital Pharmacy Database, ensuring the security of drugs by checking for 

security information of drugs and the Drug Reservoir supplying drugs in demand. Information flows (broken lines) represent computer 

communications, and direct delivery (full lines) represents interfaces in a physical form. All these provisions enable safe and 

computerized infusions with less opportunity for human errors. A partial view of the requirement specification for CGPA is shown in 

Figure 5(a). 

 

 

Fig. 4. GPCA Infusion System  [32] 

To be utilized in the model, the requirement specification was converted into a formatted list and prepared as an input file, as illustrated 

in 5 (b). 

 
(a) 

 
 

 
(b) 

Fig 5. (a) Safety Requirement Specification from Sources [31] and (b) Requirement Specification used for Proposed Model 

2.3.2. Experimental Setup 
Table 1 presents a collection of 107 functional requirements, representing ground truth, out of which 87 have been labelled as Safety 

Functions (SF) and 20 have been labelled as Non-Safety Functions (Non-SF). For model performance evaluation, its training and testing 

sets have been taken out of a split in the dataset. There are 75 functional requirements (61 SF and 14 Non-SF) in its training set and 32 

functional requirements (26 SF and 6 Non-SF) in its testing set, which represent 70% -30%. 
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Table 1. Training and Testing Requirement Specification 

Item Safety Function 

(SF) 

Non-Safety Function  

(Non-SF) 

Ground truth data  

(107 functional requirements) 
87 20 

Data for training 

(75 functional requirements) 61 14 

Data for testing 

(32 functional requirements) 
26 6 

3. Results and Discussion 

3.1. Evaluation Phase 
The evaluation section compares testing and training performance in an evaluation of model performance. To assess the performance of 

the proposed modeling requirements, the confusion matrix is employed. In a confusion matrix, a critical analysis of model performance is 

conducted through a count of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) values. In these 

experiments, two (2) different scenarios were considered, which are the testing of the model without expert knowledge while developing 

the safety properties variables, and another scenario is with expert knowledge. Performance values such as precision, recall, and F1-score, 

which are important in the evaluation and determination of improvement areas, are calculated through a calculation in a confusion matrix, 

and these have been represented in Equations 1 through 4 below. 

 

3.2. Result for Training Model 
The ground truth training data contains 61 Safety-Related Functions (SF) and 14 Non-Safety-Related Functions (Non-SF). Two scenarios 

apply: one without a field domain insulin safety properties (SP) variables database, and another with a safety property variables database. 

Model training performance is displayed in Table 2, comparing with and without expert contribution in developing a safety property 

database. With no expert contribution, 41 cases of safety functions were detected, with 34 correct detections (TP), 7 incorrect detections, 

and 27 missed cases (FN). For non-safety cases, 34 cases were detected, with 7 correct detections (TN), 7 incorrect detections (FP), and 

27 incorrect detections (FN). With expert contribution, model performance increased, with 70 detected safety functions, 59 correct 

detections, 2 missed safety functions, and 11 incorrect detections. For the non-safety function, 5 requirements were detected, with 3 

correct detections but 11 incorrect detections (FP) and 2 incorrect detections (FN). Performance reveals that expert contribution raises 

accuracy in function detections, with fewer requirements of incorrect detections and high confidence in classification. 

 
Table 2. Proposed Model Training Result 

 
Table 3 compares performance with and without training with field domain insulin SP variable data and sums them below. Without 

training with field domain insulin SP variable data, when trained, it reached an accuracy of 0.55, a precision of 0.83, recall of 0.56, and 

an F1-score of 0.68. With training with field domain insulin SP variable data, its performance increased significantly, reaching 0.83 

accuracy, 0.84 precision, 0.97 recall, and an F1-score of 0.90. The performance confirms that with field domain insulin SP variable data, 

its accuracy in predicting correct safety functions is enhanced, and recall and overall classification accuracy are enhanced. 
 

 

 

Item 

Safety Function (61 Requirements) Non-Safety Function (14 Requirements) 

Model 

Detect 

Model 

Correct 

Detect 

(TP) 

Model 

Missed 

Detect (FN) 

Model 

Uncorrect 

Detect 

Model 

Detect 

Model 

Correct 

Detect (TN) 

Model 

Missed 

Detect 

(FP) 

Model 

Uncorrect 

Detect 

Without Field 

Domain Insulin SP 

Variables Database 

41 34 27 7 34 7 7 27 

With Field Domain 

Insulin  

SP Variables 

Database 

70 59 2 11 5 3 11 2 
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Table 3. Summary Result for Training Data 

 Without Field Domain Insulin  

SP Variable Data 

With Field Domain Insulin  

SP Variable Data 

Accuracy 0.55 0.83 

Precision 0.83 0.84 

Recall 0.56 0.97 

F1–score measure 0.68 0.90 

3.3. Result for Testing Model 
Tables 4 and 5 present model testing and performance evaluation considering the insulin SP variable database. There are 26 Safety-

Related Functions (SFs) and 6 Non-Safety-Related Functions (Non-SFs) from the ground data. The experiment results show there were 

26 detected safe functions with 24 correct identifications (true positive, TP), 2 missed detections (FN), and 2 incorrect identifications 

from the model. For non-safe functions, 6 detections with 5 correct identifications (true negatives, TN), 1 misidentification (false 

positive, FP), and 1 incorrect detection were made. All these statistics validate that field domain insulin SP variables integration 

strengthens model performance in the correct classification of safe functions, with reduced incorrect detections and missed critical safe 

items. 
Table 4. Model Testing Result 

Item 

Safety Function Non Safety Function 

Model 

Detect 

Model 

Correct 

Detect 

(TP) 

Model 

Missed 

Detect (FN) 

Model 

Incorrect 

Detect 

Model 

Detect 

Model 

Correct 

Detect (TN) 

Model 

Missed 

Detect 

(FP) 

Model 

Incorrect 

Detect 

With Field 

Domain Insulin SP 

Variable Database 

26 24 2 2 6 5 1 1 

 
Table 5 is a model testing performance summary, with model accuracy at 0.91, indicative of strong overall performance in terms of 

classification. Precision value 0.92 is indicative of model performance in terms of minimizing incorrect positive cases, and recall value 

0.96 is indicative of its performance in terms of finding most actual safety functions with fewer incorrect negatives. An F1-score value of 

0.94 is indicative of a balanced reconciliation between recall and precision, indicative of model robustness. All these values denote a 

considerable improvement in performance in terms of classification with field domain insulin SP variables, indicative of its effectiveness 

in terms of improving model dependability in finding requirements critical for safety. 

 
Table 5. Summary Result for Testing Data 

Measurement Insulin SP Variable Data 

Accuracy 0.91 

Precision 0.92 

Recall 0.96 

F1–score measure 0.94 

 
Table 6 summarizes the training and testing performance for the model. In training, 0.83 accuracy, 0.84 precision, 0.97 recall, and 0.90 

F1-score represent high performance in the function for the determination of safety. In testing, performance continued with 0.91 

accuracy, 0.92 precision, 0.96 recall, and 0.94 F1-score, proving dependability in function classification for the determination of safety in 

new, unseen information. Overall, model generalizability between training and testing can be regarded as high, with high recall and 

precision for the correct determination of the function of safety. 
 

Table 6. Summary Training and Testing Results for Model Performance 

 Training Result Testing Result 

Accuracy 0.83 0.91 

Precision 0.84 0.92 

Recall 0.97 0.96 

F1–score measure 0.90 0.94 

 
The results indicate that the use of expert input and field-domain insulin SP variable data significantly enhances safety function detection 

accuracy and reliability. The model has fewer errors of incorrect classification, higher levels of confidence, and higher recall and 

precision, proving its reliability in safety-critical requirements identification. The use of field-specific variables also boosts model 

performance, with safety function classification and minimal omitted critical safety items. The findings suggest significant classification 

accuracy improvement, proving the efficacy of the model in safety function extractions from requirements specifications. The model also 

exhibits high generalizability between training and testing, proving its resilience for real-world use. 

 

4. Conclusion  

For safety-critical systems (SCS), a model is developed for automating the classification of requirements specifications for safety 

functions, in contrast with conventional expert-only practice. In its model, both expert and literature requirements specifications for a 

domain are included to improve accuracy in classification. Once processed, the model performs all operations sequentially until a 
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conclusive classification. For its performance evaluation, a public dataset named the CGPA insulin pump has been tested. On its datasets, 

the proposed model was executed for generating its conclusive classification output. 

The results achieved are 91% accuracy, 92% precision, 96% recall, and an F1 score of 94%, proving effectiveness in function 

classification for those pertaining to safety-related ones. The model proposed can confirm that it can serve experts through automation, 

improving efficiency and processing high requirements specifications in seconds, according to this work. Consequently, the model can 

serve as a semi-automated tool in supporting domain experts in distinguishing between non-safety and safety requirements. 

Subsequently, including Explainable AI (XAI) in future work can enhance transparency in safety-critical situations, with experts being 

able to know and trust AI-powered. Although useful in terms of highlighting, AI-powered knowledge bases, dynamically developed, 

updated, and about safety-related function solutions, will make the model adaptable to the changing requirements about safety. All these 

enhancements will drive Sustainable Development Goal (SDG) 11 through developing safer, more resilient, and sustainable ones 

pertaining to safety-critical ones. 
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