

Advanced Power Electronics for Grid-Integrated Renewable Energy Systems

S. Poonguzhali^{1*}, Tapas Kumar Mohapatra², Vinay Kumar Sadolalu Boregowda³, Ankita Thakur⁴, Anubhav Bhalla⁵, Kothakonda Sairam⁶, Shashikant Deepak⁷

¹*Department of Electronics and Communication Engineering, Sathyabama Institute of Science and Technology, Chennai, India*

²*Department of Electrical Engineering, Siksha 'O' Anusandhan (Deemed-to-be University), Bhubaneswar, Odisha, India*

³*Department of Electronics and Communication Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Karnataka, India*

⁴*Maharishi School of Engineering & Technology, Maharishi University of Information Technology, Uttar Pradesh, India*

⁵*Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India*

⁶*Centre for Multidisciplinary Research, Anurag University, Hyderabad, Telangana, India*

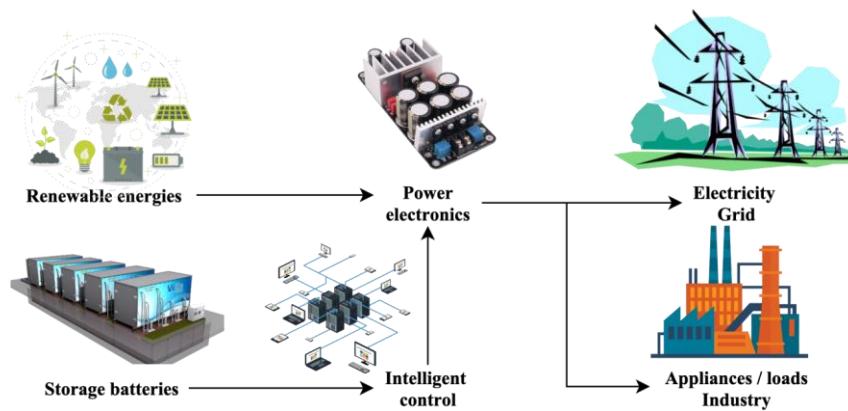
⁷*ATLAS SkillTech University, Mumbai, India*

*Corresponding author Email: poonguzhali.etce@sathyabama.ac.in

The manuscript was received on 18 November 2024, revised on 28 December 2024, and accepted on 28 March 2025, date of publication 9 May 2025

Abstract

Incorporating Renewable Energy (RE) into the grid necessitates efficient and dependable power conversion phases, especially given the rising need for enhanced controllability and adaptability from the system. Powered by sophisticated control and data technologies, power electronics converters are crucial for large-scale RE production. The deployment of power converters has revealed several issues within traditional power grids, such as decreased system stability. The paper presents grid integration with power electronics for large-scale RE production. Technical challenges and specifications are examined, emphasising grid-dependent wind, solar power, and energy storage solutions. The fundamentals of energy production and converting control for individual electrical conversions (e.g., generalised current management) and at the system layer (e.g., coordinated functioning of large-scale energy networks) are briefly addressed. Further studies are proposed to enhance large-scale RE generating capabilities by integrating additional power electronics technologies.


Keywords: Power Electronics; Grid; Renewable Energy Systems; Energy Storage.

1. Introduction

Shortages of essential supplies and environmental degradation from traditional energy sources (e.g., coal and oil) are the primary impediments to global strategy sustainability initiatives. After the Paris accord of 2015, it is essential to accomplish the energy transition by advancing and applying Renewable Energy Sources (RESs) [1]. Several nations have undertaken significant initiatives to transform their energy frameworks by incorporating RES, such as wind, solar photovoltaic (PV), biological energy, and ocean wave power, into their electrical systems [2][9]. Denmark aims to achieve complete independence from fossil fuels and attain full carbon neutrality using RES by 2050. In recent years, Germany has swiftly augmented the proportion of Renewable Energy (RE) in its electrical output [3]. The worldwide RE environment has significantly increased RES capacity during the previous two decades. The advancement of global RES from 2000 to 2020 has seen wind and solar PV technologies exhibit the most significant growth rates.

Two primary obstacles accompany the extensive integration of RESs. One challenge is the amicable integration of large-scale RES into the power grid, maintaining network stability during the injection of fluctuating RE and in the event of system interruptions [12]. The other pertains to attaining compelling, intelligent, and dependable power transformation, delivery, distribution, and consumption of power energy via the application of power electronics [6]. Power electronics technology has advanced rapidly, and grid-integration regulations for RES, particularly wind and PV systems, are constantly being revised (Fig. 1).

Fig 1. RES-integrated Grid System

Historically, power converter architectures for low-power RES primarily emphasised high power density and effectiveness while necessitating electrical isolation among the low-voltage components and the grid [4]. Grid-linked converters are often categorised into transformer-based and transformerless designs [13]. In contrast, transformer-less topologies exhibit greater efficiency, compactness, reduced dimensions, and lower costs than transformer-based conversions. Micro-inverters in low-power PV systems provide benefits such as higher voltage gain, plug-and-play functionality, and sustaining Maximum Power Point Tracking (MPPT) for every PV panel [5]. Power conversions for large-scale RES, such as wind power plants, prioritise high power levels, elevated voltage, and enhanced dependability. Practical industrial uses have shown that the application of power semiconductors in turbine systems has transitioned from partial-scale to full-scale, strengthening the system's adaptability and management [8] [10]. Multiport conversions are being examined for use in systems storing energy to improve the grid's incorporation of RE. They mainly concentrate on low-power grid-linked RES due to financial constraints.

Protection is primarily intended to guarantee the steady and secure functioning of RESs, rather than the grid itself [11]. The ongoing rise in grid-linked RES poses stability challenges for some regions. As a result, control techniques for extensive grid-linked RES increasingly emphasise grid-forming characteristics to improve grid resilience. The RES integrated with power converters must adeptly react to overarching management directives from system managers (e.g., restricted power intake) and particular requirements from end-users (e.g., continuous power delivery). Reliability-focused control will be more crucial in incorporating grid aggregation.

2. Literature Review

The fundamental aspect of wind and solar energy is its dependence on weather, resulting in natural ambiguity and inconsistency. To mitigate the effects of intermittency, RES, such as wind and PV power systems, should bolster the grid. The primary method encompasses forecasting power generation, adaptable power management capabilities, and rapid responsiveness to changing weather and operational situations [7]. The RESs must provide voltage and frequency assistance during fault ride-through operations, including voltage-reactive power regulation and frequency-active power management. In the context of operation, RESs function according to one of the four types of reactive power regulatory methods: 1) continuous power factor method; 2) voltage-reactive power method; 3) active power-reactive power method; and 4) constant reactive power method.

The transmission network operator issues directives for reactive energy injection to control and stabilise grid voltage. This reactive energy regulation should be implemented gradually within a time constant of minutes under steady-state circumstances. Under the active electrical power demands, the RESs must adjust the active energy to the grid frequencies at the Point-of-Common-Coupling (PCC). The wind turbine output is electronically constrained to any designated power setpoint. At 100% of rated strength, frequency regulation diminishes output power during over-frequency occurrences. When the wind turbine functions with a certain degree of power elimination, the output power is augmented and diminished to manage the speed flexibly. Wind power plants operating at reduced production provide more flexibility for grid frequency management.

Grid rules in several nations were revised to enhance the grid-supportive capacity of RES, facilitating reliable and steady large-scale integration into the grid [14]. During the development of RES systems, it is essential to investigate harmonic distortion and interaction difficulties, which are closely associated with: 1) topology and 2) controls. Energy converters using Wide Bandgap (WBG) devices for RE programs, operating at high frequencies of several hundred kHz, can be complicated by harmonic composition; overtones from linked converters can interact, potentially resulting in resonant instability. To include additional electronic-based energy sources into the electrical grid, generators need to replicate the characteristics of conventional generators regardless of their operating conditions.

3. Methods

3.1. Power Device Technology

Power semiconductor devices are vital for optimizing energy transformation regarding system price, effectiveness, power density, dependability, and adaptability. The ongoing advancement of power semiconductor devices is encapsulated as follows:

Silicon-based semiconductors, such as Integrated Gate Commuted Thyristor (IGCT), have served as the primary components of power conversion for RES for many decades. The advancement of WBG gadgets, such as carbide silicon (SiC) and gallium nitride (GaN) power gadgets, has resulted in several benefits and new problems. The increased switching frequencies and minimal power losses of WBG devices enhance the power densities of power converters. Obstacles in gate driver design and Electromagnetic Interference (EMI) concerns must be addressed, particularly when the switching rate of WBG devices increases significantly, reaching several megahertz.

The traditional packaging approach, characterized by soldering and bond-wire connections inside their internal chips, has significant drawbacks, including elevated thermal conductivity, reduced power density, and increased failure rates. To extend the lifespan of components, improved methods include press-pack-based plate welding, sintering techniques to eliminate chip soldering, and substituting bond wires with novel materials to diminish the coefficient of thermal expansion. The press-pack technique enhances chip

connectivity by directly press-packing the contacts, reducing short-circuit failures, increasing power density, and improving cooling efficiency. As a result, press-pack devices, encompassing silicon-based and WBG devices, are anticipated to increase utilization.

3.2. Reliability

A primary objective of power converters for RES is to attain maximum efficiency in converting energy while minimizing system costs. High dependability has garnered increasing attention, which is expected to continue since RES must function for 25 to 30 years. Alongside enhancing power converter architecture and advancing sophisticated semiconductor components (e.g., wide bandgap semiconductors), reliability-focused control schemes show potential in boosting reliability and efficiency. Design and control focused on dependability, including efficient heat administration, robust layout, and validation informed by mission profiles, are attracting significant attention. Numerous efforts have been undertaken to create thermal algorithms for electrical components and converters to assess system longevity, thereby facilitating reliability-focused design.

3.3. Advanced Control Systems

The comprehensive incorporation of RES and Energy Storage (ES) is an effective strategy to achieve energy equilibrium, enhance fault tolerance, and bolster grid support capabilities, while addressing challenges posed by renewable variability and atypical system circumstances. RESs with ES are regarded as an energy hub within the energy internet framework, characterized by intelligent cooperative management, including end-users and administrators. Electrical components will include several sophisticated control techniques, facilitating thermal evaluation and regulation, and energy-cooperative control systems, such as Artificial Intelligence (AI)-based and data-driven controllers. All ES modalities, such as electric vehicles and stationary batteries, must be consolidated in such an arrangement. The Energy network comprises physical energy sources (e.g., RES and utility grid operators) and information systems (e.g., interaction, data, and administration centers). Comprehensive data and adaptable power control enable global, efficient, and optimum energy control for enhanced power production, delivery, and distribution. The advancement of ES elements is becoming crucial due to enhanced integration of storage systems.

3.4. Grid Integration

The advancement of the energy transition via large-scale RES necessitates increasingly rigorous requirements for grid connectivity, collaboration, protection, and user participation. This enables RES with 100% power electronics to function in grid-forming mode or to exhibit more flexibility. Future considerations for these RES (e.g., including wind and PV energies, conversions, batteries, and loads) should include the following aspects:

(1) Storage: In the absence of synchronous engines, RES reliant entirely on power electronics exhibit diminished inertia, leading to worse voltage and frequency control capabilities. ES technologies must be included with RES to assume the function of synchronous power plants in grid control. Such ESs are achieved using high-specific-energy battery packs, electric vehicles, and particular ES workloads. This setting raises the need to determine the dimensions of incorporated ES devices during the design stage and optimize the whole system's management to improve active/reactive power control capabilities, ensuring sufficient inertia in future power networks. The coordinated functioning of various energy sources must be adjusted to provide an economic advantage.

Electrical converters for RES with grid-forming functions should include ES systems in RES. Multiport conversions provide advantageous solutions that facilitate adaptable power management, elevated system efficiency, substantial power density, and enhanced dependability. Several obstacles must be addressed in developing multiport conversions for large-scale grid incorporation of RES, including elevated power ratings and significant interruptions.

(2) Control: The frequency and voltage controllers markedly diverge from grid-following methods to achieve the efficient operational functionality of RESs using 100% electrical power. The power converters must be regulated to function in grid-forming mode, enabling frequency and voltage regulation comparable to synchronous turbines. The frequency and voltage regulation in grid-forming mode must be meticulously managed, considering the power grid's stability and relationship with other demands and supplies. The operational range of frequencies, voltage, and future power structures' stability indexes is redefined accordingly. Cooperation and interaction with the transmission and delivery operators should be re-evaluated based on the timeline. In contrast to conventional grid-following RES, future grid-forming controls must provide rapid and smart voltage and frequency regulation while enabling power dispatching without communication. The coordinative operations must account for the effects of voltage and frequency adjustments during grid-forming operation.

(3) Resilience: The inadvertent disconnection of RES due to extensive integration would impact grid stability, perhaps resulting in power outages. Grid resilience must be augmented by integrating RES, necessitating robust fault tolerance, efficient protective measures, and efficient emergency management for rapid recovery.

The revised IEEE 1547-2018 mandates voltage/frequency ride-through capabilities. Fault-ride over activities and safeguards (e.g., current fault safeguards, anti-islanding security, and power swing blocking prevention) must be adaptable and adequately enhanced for the grid-forming functionality of RES with low momentum. Reducing or improving the frequency of disconnection occurrences of RES becomes feasible, thereby augmenting power supply safety from these sources. Following the rectification of faults, voltage control must be improved to facilitate grid voltage restoration amidst completely incorporating RES (i.e., under weaker grid circumstances).

4. Results and Discussion

Some aphorisms are emphasized here to inform academics on potential areas of interest for future study subjects. The assertions identify unresolved difficulties requiring more attention at both the generating and integrating grid phases, as outlined below:

Advancement of enhanced meteorological prediction models designed to reduce inaccuracies. AI techniques, alone or in conjunction with strong evolutionary approaches, require additional investigation to improve the precision of real-time weather data predictions and facilitate greater integration of intermittent energy sources like solar and wind.

Enhancement of cleaning systems for solar reflectors and cells to minimize losses in effectiveness caused by deposits and particulate matter. This further improves the practical implementation of PV systems by reducing costs and significantly affecting the economic feasibility of systems.

Advances in the simplicity and cost-effectiveness of thermal and electrical ES systems. The sustainability of using discarded Electric Vehicle (EV) batteries for electricity storage ought to be examined, as it serves as a significant cost-saving strategy for the grid integration of intermittent RES.

Creation of comprehensive control algorithms for grid-integrated fuel cell devices that contain stack features and accurately simulate network operations based on constant electrical power.

Integration of multi-sectoral application possibilities in the design of grid-linked RES. For instance, the incorporation of EVs into a RE-based power grid might advantage both the transport and energy sectors, as EVs could serve as a peak-shaving role for the grid within the context of vehicle-to-grids (V2G) and grid-to-vehicles (G2V) applications.

Renewable hydrogen plays a crucial role in achieving future energy efficiency. Hydrogen functions as a direct fuel for power plants and as a storage medium, owing to its suitability for power-to-X-to-power transformation, which is beneficial for peak shaving in solar and wind power systems.

The advancement of resilient energy control and administration systems is essential for the seamless operation of grid-integrated energy systems, necessitating the inevitable integration of power electronic devices (inverters) as the link between producers and electrical grids. This is crucial to address the primary technical difficulties often linked to RE electrical systems, including poor power quality, unpredictable voltage, frequency fluctuations, and electrical harmonics. The uses of AI approaches should be thoroughly investigated, either alone or as a hybrid with current PI and adaptive control techniques.

5. Conclusion

The steadily rising need for environmentally sustainable energy production worldwide has accelerated the rapid advancement of large-scale RE generation. This article has examined the technical obstacles and advancements of wind, PV, and ES systems among many RE-producing methods. Power electronics and improved control methods are increasingly crucial for inverter-based sources. The energy paradigms and grid design are undergoing digital, electronics, and intelligent transformation, presenting prospects for effective and adaptable energy production, conversion, transmission, and consumption. Simultaneously, formidable challenges are anticipated. Large-scale RE power production is inverter-based, representing a static generation in contrast to typical rotating synchronous generators (SGs). Incorporating large-scale RES makes the utility grid either inertia-less or significantly reduces its inertia. It is less resilient to disruptions. This article shows that ES integration and grid-forming control methods are being developed for large-scale ES generating systems. Multi-energy vector devices improve this via coordinated management. Safeguarding the overall RES network is a burgeoning concern that requires enough attention and advancement in the future.

References

- [1] Talaat, M., Elkholly, M. H., Alblawi, A., & Said, T. (2023). Artificial intelligence applications for microgrids integration and management of hybrid renewable energy sources. *Artificial Intelligence Review*, 56(9), 10557-10611.
- [2] Tan, W., Sarmiento, J., & Rosales, C. A. (2024). Exploring the Performance Impact of Neural Network Optimization on Energy Analysis of Biosensor. *Natural and Engineering Sciences*, 9(2), 164-183. <https://doi.org/10.28978/nesciences.1569280>
- [3] Luderer, G., Madeddu, S., Merfort, L., Ueckerdt, F., Pehl, M., Pietzcker, R., ... & Kriegler, E. (2022). Impact of declining renewable energy costs on electrification in low-emission scenarios. *Nature Energy*, 7(1), 32-42.
- [4] Suresh, G., & Lenine, D. (2024). Gaps of Indian Electrical Energy Sector and Its Optimal Mitigation by Using Optimal Utilization of Indian Renewable Energy Policy with the Help of the P&O MPPT Technique. *Archives for Technical Sciences*, 2(31), 94–115. <https://doi.org/10.70102/afts.2024.1631.094>
- [5] Katche, M. L., Makokha, A. B., Zachary, S. O., & Adaramola, M. S. (2023). A comprehensive review of maximum power point tracking (mppt) techniques used in solar pv systems. *Energies*, 16(5), 2206.
- [6] Santhosh, G., & Prasad, K. V. (2023). Energy Saving Scheme for Compressed Data Sensing Towards Improving Network Lifetime for Cluster based WSN. *Journal of Internet Services and Information Security*, 13(1), 64-77. <https://doi.org/10.58346/JISIS.2023.I1.007>
- [7] Al-Yateem, N., Ismail, L., & Ahmad, M. (2024). A comprehensive analysis on semiconductor devices and circuits. *Progress in Electronics and Communication Engineering*, 2(1), 1–15. <https://doi.org/10.31838/PECE/02.01.01>
- [8] Zafeiropoulou, M., Mantis, I., Sijakovic, N., Terzic, A., Fotis, G., Maris, T. I., ... & Ekonomou, L. (2022). Forecasting transmission and distribution system flexibility needs resilience and outage management for severe weather conditions. *Applied Sciences*, 12(14), 7334.
- [9] Alwetaishi, N., & Alzaed, A. (2025). Smart construction materials for sustainable and resilient infrastructure innovations. *Innovative Reviews in Engineering and Science*, 3(2), 60–72. <https://doi.org/10.31838/INES/03.02.07>
- [10] Rahman, A., Farrok, O., & Haque, M. M. (2022). Environmental impact of renewable energy source-based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. *Renewable and sustainable energy reviews*, 161, 112279.
- [11] Fathima Sapna, P. (2021). Load Frequency Control of Thermal Power System by using Extended PI & FLC. *International Academic Journal of Innovative Research*, 8(2), 01–05. <https://doi.org/10.9756/IAJIR/V8I2/IAJIR0803>
- [12] Majeed, A. A., Altaie, A. S., Abderrahim, M., & Alkhazraji, A. (2023). A Review of protection schemes for electrical distribution networks with green distributed generation. *Energies*, 16(22), 7587.
- [13] Surendar, A. (2024). Internet of medical things (IoMT): Challenges and innovations in embedded system design. SCCTS Journal of Embedded Systems Design and Applications, 1(1), 43-48. <https://doi.org/10.31838/ESA/01.01.08>
- [14] Virag, L., Kovacs, J., & Edelmayer, A. (2013). Interacting advanced ITS communications with low-power sensor networks. *Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications*, 4(3), 79-96.
- [15] Dhanamjayulu, C., Sanjeevikumar, P., & Muyeen, S. M. (2022). A structural overview of transformer and transformer-less multi-level inverters for renewable energy applications. *Energy Reports*, 8, 10299-10333.
- [16] Chen, S., & Heilscher, G. (2024). Integration of distributed PV into smart grids: A comprehensive analysis for Germany. *Energy Strategy Reviews*, 55, 101525.