

Optimisation of Resource Allocation in Large-Scale Engineering Projects Using AI-Based Decision Models

Muhidinov Ayubbek Nuriddinovich^{1*}, Jainish Roy²

¹*Faculty of Business Administration, Turan International University, Namangan, Uzbekistan*

²*Department of Management, Kalinga University, Naya Raipur, Chhattisgarh, India*

*Corresponding author Email: ayubbek1988@gmail.com

The manuscript was received on 18 November 2024, revised on 28 December 2024, and accepted on 28 March 2025, date of publication 9 May 2025

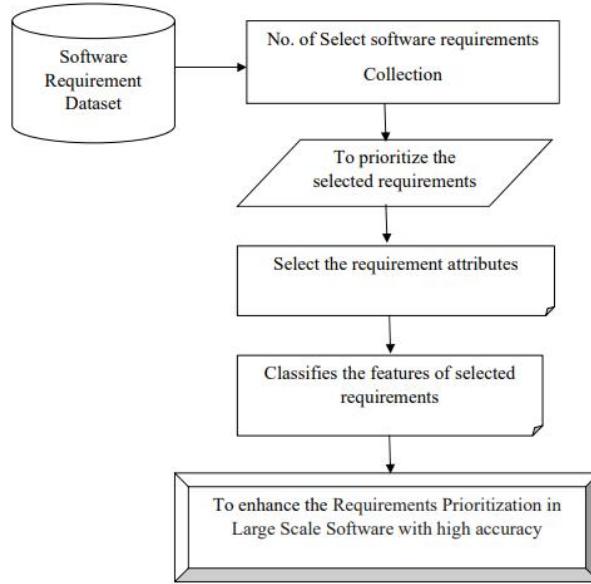
Abstract

In software development, varied decisions need to be made to ensure the fulfilment. Customers frequently seek a wide range of functions in large software projects, resulting in a vast set of requirements. Due to project timeframes and resource constraints, implementing all of the requirements is usually not possible. Setting priorities for a large number of requirements takes time and is challenging. As a result, an organised method of prioritising and subsequently choosing the primary set of needs based on several factors is required. Diverse techniques were available to prioritise the requirements effectively. But the accuracy and time consumption for Requirements Prioritisation were not optimised. Also, during the large-scale Requirements Prioritisation, multiple aspects such as time, cost are not considered. Therefore, three novel methods are proposed for enhancing the performance of large-scale Requirements Prioritisation with better accuracy and less time. Many resource plans were affected by the unexpected joining and leaving events of human resources, which may cause uncertainty. This uncertainty can also affect the quality of the project delivery. Appointing a developer to the first allotted task until the completion of the same may reduce the flexibility of human resources, even though the developer can do other tasks. Optimised Event-Based Scheduler handles this uncertainty and resource flexibility. It is pretty commonplace that we need more time for scheduling if the developer's record is enormous. Subsequently, the search space is also big, and in the long run, the resource allocation is not on time.

Keywords: PRISMA, Health Outcomes, Relevant Articles, Clinical.

1. Introduction

Software engineering contains all the linked documentation, design philosophies and coding required to develop software that functions as expected. Software Requirements Prioritisation (SRP) are captured and analyzed as well as prioritised. Requirements Prioritisation enables software under consideration for the improvement of its function as specified. SRP has to perform with the recognition of the significant requirement as perceived by pertinent stakeholders [16]. Therefore, a key success criterion for ensuring a successful requirements engineering process is the unambiguous software requirements ranking [12]. The software process refers to the adaptability of software to track a flexible, non-structured and dynamic approach which guides the progression of software systems. Requirement Engineering (RE) is a necessary phase in software development. RE is apprehensive about eliciting, documenting and preserving stakeholder requirements [10]. Frequently, gathering and protecting stakeholders' core requirements is the major reason for generating a better-quality software system. The significant feature of RE is Requirements Prioritisation (RP). RP relates to the process of recognising the essential requirements for successful system execution. RP is an iterative approach that calls for important and complex decision-making behaviours to enable high-quality system development within specified constraints [5]. Particularly, RP ensures that requirements are implemented properly and are adjusted to reflect stakeholder perceptions. Here, the participations frequently guide an accurate prioritisation consequence. Requirements Prioritisation is a prime stage in requirement engineering. Many factors affect the significance of every requirement [3]. Requirements Prioritisation helps different stakeholders to focus on the needs to be implemented during their respective releases. RP plays an important role in the software product's success [4]. The success of quality software development relies on the right selection of requirement applicants, which are prioritised based on vital priority viewpoints. For successful software progress, RE helps to obtain grave decisions regarding stakeholders' requirements [18][13].


2. Literature Review

Being different from projects in other fields, software tasks are human-intensive sports and their related assets are especially human resources and require personnel with unique skills [14]. Assigning personnel to the fine-tuned responsibilities and human aid allocation has come to be a vital component in software program venture planning [2]. Due to the importance and trouble in software task making

Copyright © Authors. This is an open access article distributed under the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

plans, there's a growing necessity for developing effective computer-aided equipment in software venture planning in recent years [6]. A project scheduling issue consists of defining which resources are used to perform which job and what the duration of each is [7][11]. The allocation of developers to tasks and scheduling tasks are not two independent activities, but they are interrelated and need to be worked on simultaneously [8]. Many researchers take into account that practices related to making a plan are the most important for the fulfilment of a software project, and particularly due to the fact that these activities are required at the beginning of a project [17].

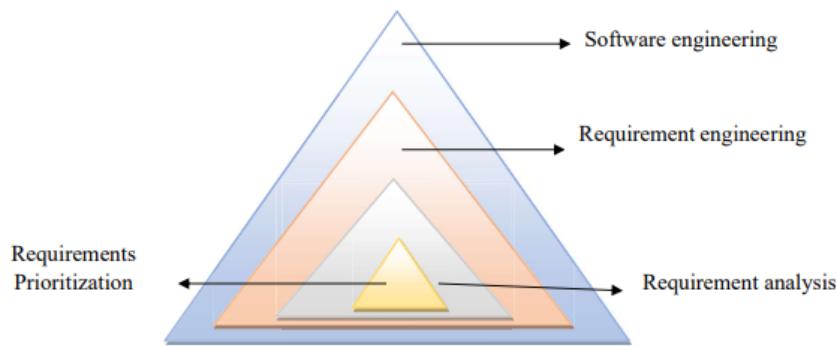
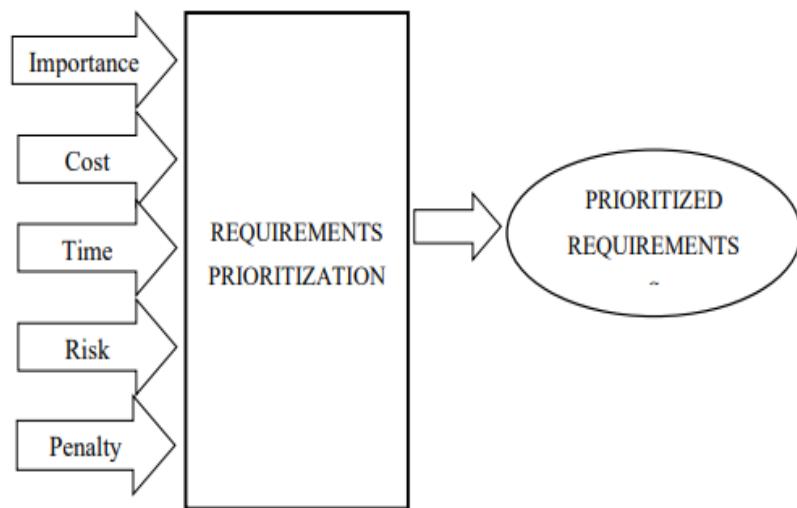


Fig 1. Proposed flow

Specifically, making a plan requires software project managers to adopt various budgeting and scheduling tasks to determine how the software product can be built, how much it will cost and the way long it will take to deliver it to the client. In order to reply to these questions, two activities need to be done, namely resource allocation and task scheduling, during which software project managers decide what needs to be accomplished, whilst and by whom [9]. These two activities are considered extremely vital for the success of a software project because, on the one hand, erroneous task scheduling may cause great delays in delivery and budget overruns, and, however, flawed aid allocation can cause an undesired low stage of exceptional in the software program products. The scheduling of the tasks present in the workload is a winding process.


3. Methods

The systematic, controlled and structured approach known as Software Engineering is used to create and manage software products. It focuses on software development to create effective software products that adhere to the restrictions of software cost and software quality. Requirement engineering is a systematic process to understand and document their requirements. The procedures used for requirement engineering on the application domain, the people, and the stakeholders involved in the software development process. Requirements elicitation, requirements analysis, requirements documentation and requirements review are all iterative behaviours. The practice of acquiring requirements by reviewing available papers is known as Requirement elicitation. Fig. 2 illustrates Requirements Prioritisation in relation to software engineering.

Fig 2. Requirements Prioritisation and Software Engineering

Requirements Prioritisation has several advantages at different times. Requirements Prioritisation helps to manage constrained resources like cost and software project length by addressing high-priority requirements before low-priority ones. It is possible to prioritise requirements by taking into account a variety of aspects, as shown in Figure 3.

Fig 3. Requirements Prioritization

A project's or requirement's aspect is a characteristic or trait that can be used to order requirements [1]. Common aspects include the importance, penalty, cost, time and risk. It is simple to determine which criterion is more desirable when ranking requirements according to a single aspect. Customers can change their minds when other aspects are involved, like cost, and high-priority requests may become less significant if they are very expensive to accomplish.

4. Result and Discussion

Deriving an order relation on a given collection of requirements, as well as obtaining a common reason for splitting them into subsequent product discharges, is the process of requirements prioritisation. The most important task in software engineering is Requirements prioritisation, which ensures that the software is usable, cost-effective, and of good quality. Software engineering has assisted in resolving the challenges of cost, timeliness, preservation, and several software product qualities. [15].

Table 1. KMO and Bartlett's Test

Factors	Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
How can predictive analytics be used to optimise resource allocation in engineering projects?	3.017	33.522	33.522	2.864	31.819	31.819
What are the benefits and challenges of using machine learning algorithms for resource allocation in engineering projects?	2.005	22.274	55.796	2.016	22.401	54.220
How can AI-based decision models improve resource allocation in large-scale engineering projects?	1.153	12.816	68.612	1.295	14.391	68.612

The capacity of a software product is to meet the demands of users and consumers frequently determines its quality. Therefore, planning appropriate releases with the appropriate features, gathering and defining the relevant requirements, is crucial to the success of a project or product.

Table 2. Variance Explained

Factor	Initial Eigenvalues		
	Total	% of Variance	Cumulative %
How can AI-based decision models improve resource allocation in large-scale engineering projects?	3.236	35.957	35.957
What are the benefits and challenges of using machine learning algorithms for resource allocation in engineering projects?	2.349	26.102	62.058
How can predictive analytics be used to optimise resource allocation in engineering projects?	1.361	15.120	77.179
What are the challenges of using AI-based decision models for resource allocation in projects with limited data?	.766	8.515	85.694
How can AI-based decision models support real-time resource allocation and monitoring?	.464	5.160	90.854
What are the benefits of using deep learning algorithms for resource allocation in engineering projects?	.339	3.772	94.626
How can AI be used to optimise resource allocation for projects with complex dependencies and constraints?	.275	3.060	97.687
Can AI-based decision models improve resource allocation for projects with multiple stakeholders and conflicting priorities?	.137	1.522	99.209
What are the implications of using AI-based decision models on project team structure and	.071	.791	100.000

organisation?				
How can AI-based decision models handle dynamic changes in project scope and requirements?	3.236	35.957	35.957	
What are the benefits of using AI-based decision models for resource allocation in agile project management?	2.349	26.102	62.058	
How can AI be used to identify and mitigate resource-related risks in engineering projects?	1.361	15.120	77.179	
Can AI-based decision models reduce waste and improve resource utilisation in engineering projects?	.766	8.515	85.694	
What are the key performance indicators (KPIs) for evaluating AI-based resource allocation models?	.464	5.160	90.854	
What are the challenges of integrating AI-based decision models with existing project management systems?	.339	3.772	94.626	
How can AI be used to optimise resource allocation for multiple projects simultaneously?	.275	3.060	97.687	
Can AI-based decision models improve collaboration and communication among project stakeholders?	.137	1.522	99.209	
How can AI-based decision models handle uncertainty and risk in resource allocation for engineering projects?	.071	.791	100.000	
What are the implications of using AI-based decision models on project timelines and schedules?	3.236	35.957	35.957	
How can AI be used to prioritise tasks and allocate resources in complex engineering projects?	2.349	26.102	62.058	
Can AI-based decision models reduce costs and improve efficiency in engineering project resource allocation?	1.361	15.120	77.179	
What are the benefits of using reinforcement learning for resource allocation in engineering projects?	.766	8.515	85.694	

Many software projects have a pool of requirements which cannot be implemented in a single release due to time and financial restrictions. Hence, prioritisation aids in identifying the order of requirements from the perspective of business value and customer needs. There are numerous techniques available in the literature to prioritise the requirements. It is necessary to know which approach to take in each situation. Each technique demonstrates a distinct perspective of prioritisation.

5. Conclusion

By analysing the literature in the field of requirements prioritisation, the following are the research gaps, and this study aims to fulfil these gaps. First and foremost, most of the previous works have prioritised only a few requirements and do not address in case if we have huge requirements to be prioritised. Secondly, in the RP activity, there will always be a certain amount of uncertainty among the different stakeholders, and each stakeholder will think that his/her perspective is correct and reaching a common consensus is also difficult. Third volatility of requirements has not been addressed much in the literature, and finally, only a few studies address issues concerned with interdependent requirements in the process of RP. Another critical aspect of RP is handling requirement interdependencies. Often, dependency is represented over time, and it means that a task cannot be completed until all of its dependencies have been met. Many of the RP methodologies currently in use believe that the requirements are independent of one another, leaving these interdependencies as work for the future. As a result, the complexity of the overall prioritisation process directly depends on the total number of interdependent requirements in a system. Prioritising requirements for complicated systems is regarded as one of the challenging tasks.

References

- [1] Annam, N. (2024). AI-Driven Solutions for IT Resource Management. *International Journal of Engineering and Management Research*, 14(6), 15-30.
- [2] Hartigan, P. (2023). Diabetic Diet Essentials for Preventing and Managing Chronic Diseases. *Clinical Journal for Medicine, Health and Pharmacy*, 1(1), 16-31.
- [3] Hu, H., Jiang, S., Goswami, S. S., & Zhao, Y. (2024). Fuzzy integrated Delphi-ISM-MICMAC hybrid multi-criteria approach to optimize the artificial intelligence (AI) factors influencing cost management in civil engineering. *Information*, 15(5), 280. <https://doi.org/10.3390/info15050280>
- [4] Agarwal, A., & Yadhav, S. (2023). Structure and Functional Guild Composition of Fish Assemblages in the Matla Estuary, Indian Sundarbans. *Aquatic Ecosystems and Environmental Frontiers*, 1(1), 16-20.
- [5] Tanim, S. H., & Ahmad, M. S. (2025). AI driven strategic decision-making in IT project management: Enhancing risk assessment, cost control, and efficiency. *Available at SSRN*.
- [6] Arul Prakash, S., & Khanna, G. (2024). Superhydrophobic Coatings in Membrane Technology: Enhancing Oil-Water Separation. *Engineering Perspectives in Filtration and Separation*, 2(3), 16-19.
- [7] Zakaria, R., & Zaki, F. M. (2024). Vehicular ad-hoc networks (VANETs) for enhancing road safety and efficiency. *Progress in Electronics and Communication Engineering*, 2(1), 27–38. <https://doi.org/10.31838/PECE/02.01.03>
- [8] Ullah, A. (2025). AI Driven Optimization of Resource Allocation and Cost Efficiency in Cloud Computing Environments.
- [9] Rishikesh, Rupasri, Tamilselvan, Yoganarasimman, & Sujai, S. (2022). Intrusion of Attacks in Puppet and Zombie Attacking and Defence Model Using BW-DDOS. *International Academic Journal of Innovative Research*, 9(1), 13–19. <https://doi.org/10.9756/IAJIR/V9I1/IAJIR0903>
- [10] Ebrahimi, A. (2019). Optimization Techniques for Resource Allocation in Large-Scale Engineering Projects: A Review of Current Approaches. *Management Strategies and Engineering Sciences*, 1(1), 11-25.
- [11] Arvinth, N. (2024). Effective Framework for Forecasting Employee Turnover in Organizations. *Global Perspectives in Management*, 2(3), 24-31.

- [12] Alkurd, R., Abualhaol, I. Y., & Yanikomeroglu, H. (2020). Personalized resource allocation in wireless networks: An AI-enabled and big data-driven multi-objective optimization. *IEEE Access*, 8, 144592-144609.
- [13] Carter, N., & Zhang, M. L. (2025). An Investigation of the Relationship Between Population Change and Electoral Outcomes. *Progression journal of Human Demography and Anthropology*, 15-20.
- [14] Ekundayo, F. (2024). Leveraging AI-Driven Decision Intelligence for Complex Systems Engineering. *Int J Res Publ Rev*, 5(11), 1-10.
- [15] Booch, K., Wehrmeister, L. H., & Parizi, P. (2025). Ultra-low latency communication in wireless sensor networks: Optimized embedded system design. *SCCTS Journal of Embedded Systems Design and Applications*, 2(1), 36-42.
- [16] Jawad, M. H., & Turki, Z. T. (2024). Diagnosis of DC Glow Discharge Plasma of Krypton Gas Under Different Pressures. *International Academic Journal of Science and Engineering*, 11(1), 98-106. <https://doi.org/10.9756/IAJSE/V11I1/IAJSE1113>
- [17] Olaoye, G. (2025). The Impact of AI on Cloud Cost Optimization and Resource Management.
- [18] Dutta, R., & Alam, T. (2024). Policy Harmonization for SDG Implementation in the ASEAN Region: Challenges and Opportunities. *International Journal of SDG's Prospects and Breakthroughs*, 2(3), 4-6.
- [19] Almalki, S. S. (2025). AI-Driven Decision Support Systems in Agile Software Project Management: Enhancing Risk Mitigation and Resource Allocation. *Systems*, 13(3), 208. <https://doi.org/10.3390/systems13030208>
- [20] Ayeni, O. Advanced Multi-Phase Project Management Frameworks: Optimizing AI-Driven Decision-Making, Risk Control, and Efficiency.
- [21] Wasi, H. A., Zoba, M. A. D., & Hussain, A. H. (2024). Solving convex monotone equations by a modified projection technique. *Results in Nonlinear Analysis*, 7(4), 181-186.