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Abstract

Rice has become an essential food source for a large portion of the world's population, greatly enhancing global food security. One of the
fundamental staple crops, paddy, is especially susceptible to diseases primarily caused by bacteria and viruses. The source of the rice blast,
Magnaporthe oryzae, poses a severe danger to the world's rice supply, mainly in South India. Both yield and quality are at risk due to the
continuous threat of different diseases. However, a few diseases can drastically lower crop yields and quality, making agricultural
productivity extremely vulnerable. Therefore, it is crucial to detect diseases at an early stage to effectively manage these risks. Scalable and
effective solutions are required because conventional approaches are laborious, expensive, and frequently inaccessible to smallholder farmers.
Data-driven strategies like machine learning (ML) and deep learning (DL), can assist in addressing these issues and increasing agricultural
sustainability and crop yield. This study presents a new Vision Transformer-based hyperparameter optimization approach for the
classification and detection of paddy leaf diseases in rice crops field (VTMHSA-RCPRF). The VTMHSA-RCPRF model comprises data
preprocessing, ViT multi-head self-attention-based feature extraction, MLP-based Focal Loss for classification and detection, and Population-
Based Training (PBT) as hyperparameter tuning. A wide range of experiments have been carried out to exhibit the promising performance of
the VTMHSA-RCPRF method. The simulation outcomes highlighted that the VTH-RCPFRF approach reaches better performance over its
recent approaches in terms of distinct measures.
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1. Introduction

As a main source of food production and the foundation of many economies around the world, Agriculture contributes significantly to the
GDP (about 17%) of nations like India. Therefore, increasing crop yields and guaranteeing food security are important issues [1].
Environmental and biotic issues are among the difficulties facing modern agriculture. Plant roots, stems, leaves, flowers, and panicles are all
impacted by biotic diseases, which are caused by bacteria, fungi, and pests. To determine the type of disease using traditional methods,
professionals are required [2]. The obstacles to increasing crop productivity can be overcome by technological developments and innovative
solutions. Based on the report of FAO (Food and Agriculture Organization), over 50% of people worldwide rely on rice (Oryza sativa L.) as
their main food source. However, a wide range of diseases, including bacteria, viruses, and fungi, can seriously harm rice crops [3].

As the most vital staple crop, Rice provides sustenance to over half of the world’s population. India ranks as the second-largest producer of
both paddy and wheat [4]. Diseases like sheath blight, rice blast (a fungal disease that affects every part of the rice plant), bacterial blight (a
fungal disease caused by Oryzae species), brown spots (Chochliobolus miyabeanus), flax spots, tungro, and leaf smut (a fungal disease that
causes black spots) frequently affect the rice crop [5]. About 80% of rice crops are at risk due to these diseases, which can affect many plant
components and spread quickly throughout the field. This might result in catastrophic famine as well as significant economic, social, and
environmental losses.
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The most destructive disease of rice (Oryza sativa L.) is rice blast, which is brought on by Magnaporthe oryzae [6]. It causes 10% of yearly
crop losses worldwide and exacerbates food instability. Paddy is susceptible to a few diseases that can drastically lower its ideal and high-
quality yield. Effective disease control depends on the prompt diagnosis and detection of plant diseases. To detect crop diseases, agricultural
professionals have always relied on visual inspections. However, this method can cause delays in diagnosis and treatment because it is
frequently expensive, time-consuming, and prone to human error [7].

The yield of the paddy was affected by diseases like bacterial leaf streaks, brown spots, rice blasts, and fake smut [8]. Early disease detection
will enable farmers to take further measures to avoid crop loss, output loss, and financial loss. For a long time, farmers have visually assessed
paddy plants for illnesses using their knowledge and crop management strategies, which may have resulted in mistakes. Utilizing cutting-edge
technology to develop a model for monitoring plant disease, detecting the type of disease affecting paddy plants, and taking preventative
measures to reduce crop loss [9].

Recently, crop imagery and computer-aided diagnostic techniques have become the most popular tools for monitoring leaf diseases and pests.
Current developments in machine learning, deep learning, and image processing techniques have made automatic leaf disease detection seem
like a promising tool that could improve the quantity and quality of rice production [10]. The demand for rice increases with population
growth. Thus, disease control is essential in rice farming, and prompt detection of rice illnesses is necessary for efficient control and timely
pesticide application. The purpose of this study is to develop and suggest a novel DL-based automated model for the classification and
diagnosis of paddy leaf diseases.

In this work, we introduce a new Vision Transformer-based hyperparameter optimization approach for classification and recognition of paddy
leaf diseases in rice fields (VIMHSA-RCPRF). The VTMHSA-RCPRF model comprises data preprocessing, Vision Transformer (ViT)
multi-head self-attention-based feature extraction, MLP-based Focal Loss for classification and detection, and Population-Based Training
(PBT) as hyperparameter tuning. A wide range of experiments has been carried out to exhibit the greater achievement of the VIMHSA-
RCPRF method.

2. Literature Review

Identify different rice plant diseases like bacterial blight, brown spot, and blast using Convolutional Neural Networks (CNNs) and deep
learning techniques. Images of various plant illnesses are used to the CNN model training, and multiple models are assessed to find the best
one for identifying the disease [11]. The results of this study will help farmers manage diseases in a timely and efficient manner by advancing
automated paddy disease diagnostics. In terms of classifying paddy diseases, the different models obtained varying degrees of accuracy.
Present a new hybrid DL approach for the early and accurate diagnosis of rice leaf diseases that combines model hybridization and thermal
imaging [12]. Simulated thermal images were added to capture temperature changes that are suggestive of early stress reactions before
symptoms become apparent. Transfer learning was used to evaluate CNN models. Duncan's multiple range test (DMRT) was used for
analysis of statistics, and Darknet53 was found to be the best-performing model. Significant performance improvements were obtained by
hybridizing Darknet53 by substituting a Support Vector Machine (SVM) for its dense layer. These findings demonstrate the model's
efficiency for real-time implementation in agricultural applications, offering small-scale farmers a reliable and effective solution. This study
provides a framework for tackling different crop diseases and emphasizes the importance of combining DL model and thermal imaging to
improve the management of crop disease.

Develop and suggest a novel DL-based automated model for the classification and diagnosis of paddy leaf diseases. K-means clustering is
used to group the data after it has been pre-processed by selecting the ROIs, labeling, enhancing, and segmenting it using adaptive
thresholding [13]. Color, shape, and texture information were extracted using the MobileNetV3 model, a pre-trained transfer learning
technique. The hybrid Genghis Khan Shark Optimization (GKSO) with Simulated Annealing (SA) model is used to choose the key features.
In order to classify diseases, the selected features are then given to the CatBoost. Metrics including accuracy, sensitivity, and F1-score have
been used to validate the system's performance as the DL methods for disease detection and classification.

Provide an effective and suitable method for identifying diseases in rice leaves using a DL approach. To meet the algorithmic requirements,
images of rice leaf diseases were collected and processed [14]. 32 pretrained models were first used to extract features. Next, we used a
variety of ML and ensemble learning classifiers to categorize the images of rice leaf diseases, including bacterial blight, rice blast, and brown
spot, and compared the outcomes. The suggested process is more effective than the existing approaches. The model EfficientNetV2B3 with
ET and HGB classifiers achieves better outcome even after the segmentation phase.

3. Methods

In this paper, an innovative VTMHSA-RCPRF method is presented for rice blast leaf disease classification. The VTMHSA-RCPREF technique
has different kinds of procedures, such as data preprocessing, ViT-based feature extraction, MLP-based Focal Loss using classification and
health detection, and Population-Based Training (PBT) for the hyperparameter tuning process. The overall working procedure of the
VTMHSA-RCPREF algorithm is given in Figure 1.
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Fig 1. Overall working procedure of the VTMHSA-RCPRF technique

3.1. Data preprocessing

The first step is data preprocessing, which improves quality, normalizes values, and eliminates noise from raw rice leaf photos before they are
analysed [15]. The key phases in DL are data preprocessing. A model's performance will be improved, and the output will be positively
impacted if raw data is prepared correctly using necessary approaches. The suggested VTMHSA-RCPRF technology initially undergoes a
WF-based image preprocessing step to eliminate the noise. As a linear filter, the WF reduces the mean square error (MSE) between the
original and filtered signals. Its goal is to enhance images that have been deteriorated by additive noise. By modifying the filter's parameters,
the WF strikes a balance between lowering noise and maintaining significant visual features. Egs. (1), (2), and (3) provide a mathematical
representation of WF.

H = (u, v)Ps(u, v)

G0 v) =t v Py (w, v) + Bt ) -
Gl v) = i f(u v) -3
IH('N., v)IZ + Pz (u: V)

The power spectrum of the signal and noise operations is indicated here by Fy(u, v} and B,(1u, 1], respectively. F; in Eq. (2) is divided to
obtain Eq (3).

The contrast of an image is then improved using CLAHE (Contrast Limited Adaptive Histogram Equalization). In order to achieve this [16],
CLAHE first divides the image into patches, and then, while maintaining the noise amplification limitation, equalizes the histograms of the
patches. Local contrast will rise as a result, particularly in low-visibility regions, but noise will also be amplified, particularly in areas with
low contrast or homogeneity. Although it is typically used in combination with other techniques to attain better outcomes, this increases the
efficacy of CLAHE in image visibility enhancement over basic denoising.

3.2. Feature Extraction Using Vision Transformer (ViT)

By focusing on disease-relevant areas throughout the entire image, the Vision Transformer (ViT) multi-head self-attention-based feature
extraction approach automatically learns both local and global leaf patterns [17]. As a variant of Neural Network model architecture, ViT
processes visual input, particularly images, using a Transformer technique. ViT operates by converting the input images into small patches,
each of which will be represented in vector form, as opposed to conventional techniques, which frequently employ convolutional layers for
image processing. The Transformer model uses these patch vectors as input after they have been flattened into a one-dimensional sequence.
To maintain the image's spatial context, positional information (position embedding) is added to each patch vector. This sequence is
subsequently processed by the Transformer encoder, which includes a MLP and multiple self-attention layers. This enables the model to
recognize the intricate relationships between various image components. The classification layer then receives the Transformer encoder's
output and uses it to create class predictions.

3.3. Self-Attention

A crucial part of the Transformer architecture of ANN, the self-attention mechanism allows the model to concentrate on and assess the
importance of different interactions between elements in a data sequence [18], like words in text or patches in an image. The fundamental
steps of the self-attention mechanism are as follows:

Query, Key, and Value Representation: These representations are used for every image patch that undergoes a linear transformation.

Image Division: Like "words" or "tokens" in natural language models, images are divided into discrete parts. Every patch in the image is
regarded as an entity that is treated with self-attention.
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Normalization and Weighting: A SoftMax function is used to normalize the suitability scores, producing weights that highlight the patches
that are most pertinent to the query patch. The values of the image patches are then multiplied by these weights to create a new weighted
representation for each patch that considers how it relates to the other patches in the image.

Conformity Score Calculation (Dot Product): The conformity score (dot product) of each patch in the key image is queried with each other
patch. The relevance of the patch-query to the patch-key is indicated by this score.

Integration and Output: The output of self-attention at the level of the entire image is created by combining the weighted representations of
each patch. This output is subsequently used in further stages of the ViT model. The model can understand the relationship between each
element in the data sequence and assess its significance with respect to other elements. With a stack of self-attention layers, this configuration
develops into multi-head attention, which increases the model's efficiency to identify diverse relationships in the data.

3.4. MLP-based Focal Loss Model for Disease Detection

After that, the MLP-based Focal Loss model was employed to accurately classify and identify both healthy and blast-infected rice leaves [19].
A focal loss-based MLP classifier processes the feature-selected training data. The process of correctly classifying the data into the
appropriate activity labels can be handled by this classifier. When it comes to addressing complicated datasets where linear models are
inadequate, MLP's ability to capture non-linear correlations between features and target variables offers distinct advantages over conventional
ML techniques. Furthermore, foral _loss enables the MLP to focus more on learning from difficult instances, including hard -to-distinguish
or minority class samples, by lessening the influence of well-classified examples. This becomes more resilient to noise, outliers, and
variations in the distribution by prioritizing the accurate classification of difficult instances.

The focal _1oss function Ly, (P.¥) can be described by:

Y T T R o L - g e o o= e s S (3

Where ¥ characterizes the actual label, which can be either 0 or 1, the predicted probability of the accurate class is, p and the focusing
parameter that modifies how much weight is given to easier samples can be denoted as vy.

By down-weighting easy examples according to the value of vy, this approach highlights examples that are hard to classify. The model can
focus more on cases that have been misclassified when y = 0 since it lessens the loss related to correctly classified examples (where p 7 0 or
p # 1). The focal nature of the loss function is attributed to the increasing effect of down-weighting as ¥ grows.

3.5. Population-Based Training (PBT) based Hyperparameter Tuning

Lastly, the process of hyperparameter tuning for better disease classification performance is carried out using Population-Based Training
(PBT). As a genetic algorithm, the PBT aims to increase the effectiveness of hyperparameter optimization [20]. The main concept of PBT is
to gradually grow a population of models by enabling them to explore with various hyperparameter configurations and share data so that the
optimal configurations can be exploited. When compared to conventional techniques, this dynamic and adaptive approach frequently yields
faster convergence to optimal or nearly optimal solutions. Like the random search process, the hyperparameters are chosen randomly. For a
few rounds, the models learn in parallel, but they never converge. After evaluating each model, the framework identifies the model that
performs better. There are two ways to externally update each weight and hyperparameters during the PBT process.

Exploitation: Uses randomly chosen individuals from the upper quantile to replace the weights and hyperparameters of the poorest individuals
in the lower quantile.

Exploration: Offers suggestions for extra hyperparameters to thoroughly investigate and analyze the solution space. Until the iteration for the
hyperparameter change is finished, this step is repeated. The PBT can be expressed mathematically as follows:

Initialization of the Population: Hyperparameters are assigned at random from predetermined ranges to generate a population.
o T T I PPN ®))

Where M represents the population size, and 8; and 1'i stands for the model's parameters and hyperparameters, correspondingly.
Model Training: Each model {8;, jr'3 is trained for a certain number of steps 3, producing updated parameters:
e =T PP (6)

The ML technique and dataset being used determine which training function is used.
Performance Evaluation: Evaluate the model performance {F) on a validation dataset using a performance metric.
R 1 =T - P T PP @)

Selection and Exploitation: Arrange the models based on the metric's performance evaluation. Identify which models are underperforming.
Replace underperforming models with modified copies of models that perform better.
('E‘F,,J.{:,j TR L sl T A TSP P PP PUPUUURRITPP ®)

Where Perturh is a function that modifies the hyperparameters 1'b in a modest way, and By, ¥y, is a high-performing model.

Perturbation of Hyperparameters (Exploration): Slightly mutate or perturb the selected models' hyperparameters:

Vo ¥h ot B e 9
A minor random change is represented by the symbol &. Until the iteration process has been completed or the convergence conditions are met,
the process should be repeated.
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The algorithm for PBT model is given below:
Algorithm: PBT approach

Initialize population P = {#;, }. i = L N
While not converged, do

for eachd;, y; € P

B = Train(fq,.5)

F; = Evaluate(d;)

Sort models according to F;

Replace the model that performs poorly
Perturb hyperparameters of selected models
End for

End while

4. Results and Discussion
In this study, the experimental validation outcomes of the VTMHSA-RCPRF method are examined utilizing the Kaggle dataset [21] includes
10431 annotated rice leaf images that were gathered from South Indian paddy fields between 2021 and 2024. The dataset includes both

healthy and rice blast-infected plants, such as mild, moderate, and severe. Figure 2 shows the sample images of paddy leaf disease.

Table 1. Details on the database

Classes No. of Images
Healthy 5869

Mild 3131
Moderate 885

Severe 556

Total No. of Images 10431

(a) Normal (b) Mild (c) Moderate (d) Severe

Fig 2. Sample images of Paddy Disease (a) Normal (b) Rice Blast (c) Moderate (d) Severe Leaf
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Fig 3. Rice-Blast Detection outcome of (a-b) 80% and 20% confusion matrices and (c-d) PR and ROC curves
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Figure 3 demonstrates the Rice-Blast recognition findings of the VIMHSA-RCPRF method under the testing dataset. Figures. 3a-3b
symbolizes the confusion matrices produced by the VTMHSA-RCPRF approach on 80:20 of TRPH/TSPH. The experimental analysis
implied that the VTMHSA-RCPRF approach has familiar and classified all class labels exactly. Also, Figure. 3¢ validates the PR curve of the
VTMHSA-RCPRF technique. The outcome stated that the VTMHSA-RCPRF method has increased maximum efficiency of PR under all
classes. Lastly, Figure. 3d displays the ROC cruve of the VTIMHSA-RCPRF technique. The result signified that the VTMHSA-RCPRF
algorithm has resulted in effective performances with highest ROC values under various classes.

In Table 2 and Figure. 8, the Rice-Blast classifier outcomes of the VTMHSA-RCPRF method with 80:20 TRPH/TSPH. The experimental
analysis designate that the VTMHSA-RCPRF system accurately classified distinct stages. With 80%TRPH, the VTMHSA-RCPRF model
offers average 98.25%, acciy, 97.36% precy, 98.16% recay, 99.72% Foppre, and 98.27% AUC. o, Afterward, with 20%TSPH, the

VTMHSA-RCPREF technique gets average 97.78% aCclly, 96.56% precy, 98.02% recay, 97.12% Foppr, and98.32% AUC - pre

Table 3. Rice blast outcome of VTMHSA-RCPRF technique with 80:20 TRPH/TSPH

Class Accity Frecy, Recm  — AUC ;oo
TRPH (80%)

Healthy 97.20 97.89 99.34 97.61 98.50
Mild 96.66 96.30 99.43 99.86 97.66
Moderate 98.89 97.56 97.84 97.70 96.64
Severe 96.91 95.92 98.78 97.84 98.80
Average 98.25 97.36 98.16 98.24 99.72
TSPH (20%)

Healthy 99.84 97.77 98.97 98.87 98.78
Mild 98.70 96.47 97.64 95.05 96.87
Moderate 97.96 98.44 96.88 97.15 95.13
Severe 96.94 97.79 95.25 98.52 98.49
Average 97.78 96.56 98.02 97.12 98.32

B st Pase (20%

Accuracy Precision Recall F-Score MUC-score
Fig 4. Average of VTMHSA-RCPRF method on 80:20 TRPH/TSPH
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Fig 5. Acru, curve of VTMHSA-RCPRF method at 80:20 TRPH/TSPH
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In Figure. 5, the training accuracy (TRAC) and validation accuracy (VLAC) outcomes of the VTMHSA-RCPRF model are demonstrated on
80:20 TRPH/TSPH. The TRAC and VLAC is evaluated over a range of 0-100 epoch counts. The figure emphasizes that the TRAC and
VLAC values illustrate a rising tendency, which reports the skill of the VTMHSA-RCPRF approach with remarkable outcomes over various
iterations. Besides, the TRAC and VLAC remain close over the epochs, which specifies low insignificant overfitting and exhibits improved

performance of the VTMHSA-RCPRF method, assuring constant prediction on unseen samples.

In Figure. 10, the training loss (TRLS) and validation loss (VLLS) graph of the VIMHSA-RCPRF model is shown under 80:20
TRPH/TSPH. The TRLS and VLLS values are computed over a range of 0-100 epochs. It is signified that the TRAC and VLAC values
explain a declining tendency, notifying the effeceincy of the VIMHSA-RCPRF approach to balance a tradeoff between data fitting and
generalization. The steady decline in loss values further promises the greater efficiency of the VTMHSA-RCPRF method and tunes the

prediction outcomes over time.

Training and Validation Loss (80:20)

1.2 —— Training
—— \alidation
1.0+
0.8 A
A
3
0.6
0.4 4
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Fig 6. Loss curve of VTMHSA-RCPRF method at 80:20 TRPH/TSPH

To demonstrate the improved efficiency of the VTMHSA-RCPRF method, a brief comparison analysis is demostrated in Table 3 and Figure
7. The experimental study showed that the CNN and VGG19-SVM methods had poorer classification performance. The DenseNet-ISVM
and ResNet-50 methods have attempted to get somewhat more accurate classification results in the interim. However, the VTMHSA-RCPRF
technique demonstrates promising performance with 98.82% accuy, 97.87% precy, 98.27% recay, and 99.07% Fopgre.

Table 3. Comparative study of VTMHSA-RCPRF with other technqiues

Classifiers Accuy  Prec,  Recqp Foegre
VTMHSA-RCPRF  98.82 97.87 9827 99.07
DenseNet-SVM 9713 9682 97.18  96.70
ResNet-350 97.13 9642 9898 95.70
CNN 9796 98.18 9546 9632
VGG19-SVM 96.13 9526 9634 97.80

100

Avg. Values (%)

Accuracy Precision

Fig 7. Comparative outcome of VIMHSA-RCPRF technique with other existing models
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5. Conclusion

In this article, we present a new Vision Transformer-based hyperparameter optimization method for earlier recognition and classification of
paddy leaf diseases in rice field (VIMHSA-RCPRF). The VITMHSA-RCPRF technique has different kinds of procedures such as data
preprocessing, ViT-based feature extraction, MLP based Focal Loss using classification and detection of healthy and Population Based
Training (PBT) for hyperparameter tuning process. A wide range of experiments have been carried out to exhibit the remarkable performance
of the VTIMHSA-RCPRF technique. The results highlighted that the VTH-RCPFRF technique reaches better performance over its recent
approaches in terms of distinct measures.
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