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Abstract 

 

Rice has become an essential food source for a large portion of the world's population, greatly enhancing global food security. One of the 

fundamental staple crops, paddy, is especially susceptible to diseases primarily caused by bacteria and viruses. The source of the rice blast, 

Magnaporthe oryzae, poses a severe danger to the world's rice supply, mainly in South India. Both yield and quality are at risk due to the 

continuous threat of different diseases. However, a few diseases can drastically lower crop yields and quality, making agricultural 

productivity extremely vulnerable. Therefore, it is crucial to detect diseases at an early stage to effectively manage these risks. Scalable and 

effective solutions are required because conventional approaches are laborious, expensive, and frequently inaccessible to smallholder farmers. 

Data-driven strategies like machine learning (ML) and deep learning (DL), can assist in addressing these issues and increasing agricultural 

sustainability and crop yield. This study presents a new Vision Transformer-based hyperparameter optimization approach for the 

classification and detection of paddy leaf diseases in rice crops field (VTMHSA-RCPRF). The VTMHSA-RCPRF model comprises data 

preprocessing, ViT multi-head self-attention-based feature extraction, MLP-based Focal Loss for classification and detection, and Population-

Based Training (PBT) as hyperparameter tuning. A wide range of experiments have been carried out to exhibit the promising performance of 

the VTMHSA-RCPRF method. The simulation outcomes highlighted that the VTH-RCPFRF approach reaches better performance over its 

recent approaches in terms of distinct measures. 
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1. Introduction 

As a main source of food production and the foundation of many economies around the world, Agriculture contributes significantly to the 

GDP (about 17%) of nations like India. Therefore, increasing crop yields and guaranteeing food security are important issues [1]. 

Environmental and biotic issues are among the difficulties facing modern agriculture. Plant roots, stems, leaves, flowers, and panicles are all 

impacted by biotic diseases, which are caused by bacteria, fungi, and pests. To determine the type of disease using traditional methods, 

professionals are required [2]. The obstacles to increasing crop productivity can be overcome by technological developments and innovative 

solutions. Based on the report of FAO (Food and Agriculture Organization), over 50% of people worldwide rely on rice (Oryza sativa L.) as 

their main food source. However, a wide range of diseases, including bacteria, viruses, and fungi, can seriously harm rice crops [3].  

As the most vital staple crop, Rice provides sustenance to over half of the world’s population. India ranks as the second-largest producer of 

both paddy and wheat [4]. Diseases like sheath blight, rice blast (a fungal disease that affects every part of the rice plant), bacterial blight (a 

fungal disease caused by Oryzae species), brown spots (Chochliobolus miyabeanus), flax spots, tungro, and leaf smut (a fungal disease that 

causes black spots) frequently affect the rice crop [5]. About 80% of rice crops are at risk due to these diseases, which can affect many plant 

components and spread quickly throughout the field. This might result in catastrophic famine as well as significant economic, social, and 

environmental losses. 
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The most destructive disease of rice (Oryza sativa L.) is rice blast, which is brought on by Magnaporthe oryzae [6]. It causes 10% of yearly 

crop losses worldwide and exacerbates food instability. Paddy is susceptible to a few diseases that can drastically lower its ideal and high-

quality yield. Effective disease control depends on the prompt diagnosis and detection of plant diseases. To detect crop diseases, agricultural 

professionals have always relied on visual inspections. However, this method can cause delays in diagnosis and treatment because it is 

frequently expensive, time-consuming, and prone to human error [7].  

The yield of the paddy was affected by diseases like bacterial leaf streaks, brown spots, rice blasts, and fake smut [8]. Early disease detection 

will enable farmers to take further measures to avoid crop loss, output loss, and financial loss. For a long time, farmers have visually assessed 

paddy plants for illnesses using their knowledge and crop management strategies, which may have resulted in mistakes. Utilizing cutting-edge 

technology to develop a model for monitoring plant disease, detecting the type of disease affecting paddy plants, and taking preventative 

measures to reduce crop loss [9].  

Recently, crop imagery and computer-aided diagnostic techniques have become the most popular tools for monitoring leaf diseases and pests. 

Current developments in machine learning, deep learning, and image processing techniques have made automatic leaf disease detection seem 

like a promising tool that could improve the quantity and quality of rice production [10]. The demand for rice increases with population 

growth. Thus, disease control is essential in rice farming, and prompt detection of rice illnesses is necessary for efficient control and timely 

pesticide application. The purpose of this study is to develop and suggest a novel DL-based automated model for the classification and 

diagnosis of paddy leaf diseases. 

In this work, we introduce a new Vision Transformer-based hyperparameter optimization approach for classification and recognition of paddy 

leaf diseases in rice fields (VTMHSA-RCPRF). The VTMHSA-RCPRF model comprises data preprocessing, Vision Transformer (ViT) 

multi-head self-attention-based feature extraction, MLP-based Focal Loss for classification and detection, and Population-Based Training 

(PBT) as hyperparameter tuning. A wide range of experiments has been carried out to exhibit the greater achievement of the VTMHSA-

RCPRF method.  

2. Literature Review 

Identify different rice plant diseases like bacterial blight, brown spot, and blast using Convolutional Neural Networks (CNNs) and deep 

learning techniques. Images of various plant illnesses are used to the CNN model training, and multiple models are assessed to find the best 

one for identifying the disease [11]. The results of this study will help farmers manage diseases in a timely and efficient manner by advancing 

automated paddy disease diagnostics. In terms of classifying paddy diseases, the different models obtained varying degrees of accuracy. 

Present a new hybrid DL approach for the early and accurate diagnosis of rice leaf diseases that combines model hybridization and thermal 

imaging [12]. Simulated thermal images were added to capture temperature changes that are suggestive of early stress reactions before 

symptoms become apparent. Transfer learning was used to evaluate CNN models. Duncan's multiple range test (DMRT) was used for 

analysis of statistics, and Darknet53 was found to be the best-performing model. Significant performance improvements were obtained by 

hybridizing Darknet53 by substituting a Support Vector Machine (SVM) for its dense layer. These findings demonstrate the model's 

efficiency for real-time implementation in agricultural applications, offering small-scale farmers a reliable and effective solution. This study 

provides a framework for tackling different crop diseases and emphasizes the importance of combining DL model and thermal imaging to 

improve the management of crop disease. 

Develop and suggest a novel DL-based automated model for the classification and diagnosis of paddy leaf diseases. K-means clustering is 

used to group the data after it has been pre-processed by selecting the ROIs, labeling, enhancing, and segmenting it using adaptive 

thresholding [13]. Color, shape, and texture information were extracted using the MobileNetV3 model, a pre-trained transfer learning 

technique. The hybrid Genghis Khan Shark Optimization (GKSO) with Simulated Annealing (SA) model is used to choose the key features. 

In order to classify diseases, the selected features are then given to the CatBoost. Metrics including accuracy, sensitivity, and F1-score have 

been used to validate the system's performance as the DL methods for disease detection and classification.  

Provide an effective and suitable method for identifying diseases in rice leaves using a DL approach. To meet the algorithmic requirements, 

images of rice leaf diseases were collected and processed [14]. 32 pretrained models were first used to extract features. Next, we used a 

variety of ML and ensemble learning classifiers to categorize the images of rice leaf diseases, including bacterial blight, rice blast, and brown 

spot, and compared the outcomes. The suggested process is more effective than the existing approaches. The model EfficientNetV2B3 with 

ET and HGB classifiers achieves better outcome even after the segmentation phase.  

3. Methods  

In this paper, an innovative VTMHSA-RCPRF method is presented for rice blast leaf disease classification. The VTMHSA-RCPRF technique 

has different kinds of procedures, such as data preprocessing, ViT-based feature extraction, MLP-based Focal Loss using classification and 

health detection, and Population-Based Training (PBT) for the hyperparameter tuning process. The overall working procedure of the 

VTMHSA-RCPRF algorithm is given in Figure 1. 
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Fig 1. Overall working procedure of the VTMHSA-RCPRF technique 

3.1. Data preprocessing 
The first step is data preprocessing, which improves quality, normalizes values, and eliminates noise from raw rice leaf photos before they are 

analysed [15]. The key phases in DL are data preprocessing. A model's performance will be improved, and the output will be positively 

impacted if raw data is prepared correctly using necessary approaches. The suggested VTMHSA-RCPRF technology initially undergoes a 

WF-based image preprocessing step to eliminate the noise. As a linear filter, the WF reduces the mean square error (MSE) between the 

original and filtered signals. Its goal is to enhance images that have been deteriorated by additive noise. By modifying the filter's parameters, 

the WF strikes a balance between lowering noise and maintaining significant visual features. Eqs. (1), (2), and (3) provide a mathematical 

representation of WF. 

 
The power spectrum of the signal and noise operations is indicated here by  and , respectively.  in Eq. (2) is divided to 

obtain Eq (3). 

The contrast of an image is then improved using CLAHE (Contrast Limited Adaptive Histogram Equalization). In order to achieve this [16], 

CLAHE first divides the image into patches, and then, while maintaining the noise amplification limitation, equalizes the histograms of the 

patches. Local contrast will rise as a result, particularly in low-visibility regions, but noise will also be amplified, particularly in areas with 

low contrast or homogeneity. Although it is typically used in combination with other techniques to attain better outcomes, this increases the 

efficacy of CLAHE in image visibility enhancement over basic denoising. 

3.2. Feature Extraction Using Vision Transformer (ViT) 
By focusing on disease-relevant areas throughout the entire image, the Vision Transformer (ViT) multi-head self-attention-based feature 

extraction approach automatically learns both local and global leaf patterns [17]. As a variant of Neural Network model architecture, ViT 

processes visual input, particularly images, using a Transformer technique. ViT operates by converting the input images into small patches, 

each of which will be represented in vector form, as opposed to conventional techniques, which frequently employ convolutional layers for 

image processing. The Transformer model uses these patch vectors as input after they have been flattened into a one-dimensional sequence. 

To maintain the image's spatial context, positional information (position embedding) is added to each patch vector. This sequence is 

subsequently processed by the Transformer encoder, which includes a MLP and multiple self-attention layers. This enables the model to 

recognize the intricate relationships between various image components. The classification layer then receives the Transformer encoder's 

output and uses it to create class predictions. 

3.3. Self-Attention  
A crucial part of the Transformer architecture of ANN, the self-attention mechanism allows the model to concentrate on and assess the 

importance of different interactions between elements in a data sequence [18], like words in text or patches in an image. The fundamental 

steps of the self-attention mechanism are as follows: 

Query, Key, and Value Representation: These representations are used for every image patch that undergoes a linear transformation. 

Image Division: Like "words" or "tokens" in natural language models, images are divided into discrete parts. Every patch in the image is 

regarded as an entity that is treated with self-attention. 
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Normalization and Weighting: A SoftMax function is used to normalize the suitability scores, producing weights that highlight the patches 

that are most pertinent to the query patch. The values of the image patches are then multiplied by these weights to create a new weighted 

representation for each patch that considers how it relates to the other patches in the image. 

Conformity Score Calculation (Dot Product): The conformity score (dot product) of each patch in the key image is queried with each other 

patch. The relevance of the patch-query to the patch-key is indicated by this score. 

Integration and Output: The output of self-attention at the level of the entire image is created by combining the weighted representations of 

each patch. This output is subsequently used in further stages of the ViT model. The model can understand the relationship between each 

element in the data sequence and assess its significance with respect to other elements. With a stack of self-attention layers, this configuration 

develops into multi-head attention, which increases the model's efficiency to identify diverse relationships in the data. 

3.4. MLP-based Focal Loss Model for Disease Detection 
After that, the MLP-based Focal Loss model was employed to accurately classify and identify both healthy and blast-infected rice leaves [19]. 

A focal 1oss-based MLP classifier processes the feature-selected training data. The process of correctly classifying the data into the 

appropriate activity labels can be handled by this classifier. When it comes to addressing complicated datasets where linear models are 

inadequate, MLP's ability to capture non-linear correlations between features and target variables offers distinct advantages over conventional 

ML techniques. Furthermore,  enables the MLP to focus more on learning from difficult instances, including hard -to-distinguish 

or minority class samples, by lessening the influence of well-classified examples. This becomes more resilient to noise, outliers, and 

variations in the distribution by prioritizing the accurate classification of difficult instances. 

The  function  can be described by: 

(4) 

 

Where  characterizes the actual label, which can be either 0 or 1, the predicted probability of the accurate class is,  and the focusing 

parameter that modifies how much weight is given to easier samples can be denoted as γ. 

By down-weighting easy examples according to the value of γ, this approach highlights examples that are hard to classify. The model can 

focus more on cases that have been misclassified when  since it lessens the loss related to correctly classified examples (where  or 

). The focal nature of the loss function is attributed to the increasing effect of down-weighting as  grows. 

3.5. Population-Based Training (PBT) based Hyperparameter Tuning 
Lastly, the process of hyperparameter tuning for better disease classification performance is carried out using Population-Based Training 

(PBT). As a genetic algorithm, the PBT aims to increase the effectiveness of hyperparameter optimization [20]. The main concept of PBT is 

to gradually grow a population of models by enabling them to explore with various hyperparameter configurations and share data so that the 

optimal configurations can be exploited. When compared to conventional techniques, this dynamic and adaptive approach frequently yields 

faster convergence to optimal or nearly optimal solutions. Like the random search process, the hyperparameters are chosen randomly. For a 

few rounds, the models learn in parallel, but they never converge. After evaluating each model, the framework identifies the model that 

performs better. There are two ways to externally update each weight and hyperparameters during the PBT process. 

Exploitation: Uses randomly chosen individuals from the upper quantile to replace the weights and hyperparameters of the poorest individuals 

in the lower quantile. 

Exploration: Offers suggestions for extra hyperparameters to thoroughly investigate and analyze the solution space. Until the iteration for the 

hyperparameter change is finished, this step is repeated. The PBT can be expressed mathematically as follows: 

 

Initialization of the Population: Hyperparameters are assigned at random from predetermined ranges to generate a population. 

        ………………………………………………………………………………………………………………………(5) 

 

Where  represents the population size, and  and  stands for the model's parameters and hyperparameters, correspondingly. 

Model Training: Each model   is trained for a certain number of steps , producing updated parameters: 

       ………………………………………………………………………………………………………………………(6) 

 

The ML technique and dataset being used determine which training function is used. 

Performance Evaluation: Evaluate the model performance  on a validation dataset using a performance metric. 

         ………………………………………………………………………………………………………………………(7) 

 

Selection and Exploitation: Arrange the models based on the metric's performance evaluation. Identify which models are underperforming. 

Replace underperforming models with modified copies of models that perform better. 

              ……………………………………………………………………………………………….….(8) 

Where  is a function that modifies the hyperparameters  in a modest way, and   is a high-performing model. 

 

Perturbation of Hyperparameters (Exploration): Slightly mutate or perturb the selected models' hyperparameters: 

                                                   …………………………………………………………………………………………………..(9) 

A minor random change is represented by the symbol . Until the iteration process has been completed or the convergence conditions are met, 

the process should be repeated.  
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The algorithm for PBT model is given below: 

Algorithm: PBT approach 

Initialize population     

While not converged, do 

for  

 

 
Sort models according to  

Replace the model that performs poorly  

Perturb hyperparameters of selected models 

End for  

End while 

4. Results and Discussion 

In this study, the experimental validation outcomes of the VTMHSA-RCPRF method are examined utilizing the Kaggle dataset [21] includes 

10431 annotated rice leaf images that were gathered from South Indian paddy fields between 2021 and 2024. The dataset includes both 

healthy and rice blast-infected plants, such as mild, moderate, and severe.  Figure 2 shows the sample images of paddy leaf disease. 

 

Table 1. Details on the database 

Classes No. of Images 

Healthy 5869 

Mild 3131 

Moderate 885 

Severe 556 

Total No. of Images 10431 

 

 
 

Fig 2. Sample images of Paddy Disease (a) Normal (b) Rice Blast (c) Moderate (d) Severe Leaf 

 
 

Fig 3. Rice-Blast Detection outcome of (a-b) 80% and 20% confusion matrices and (c-d) PR and ROC curves 
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Figure 3 demonstrates the Rice-Blast recognition findings of the VTMHSA-RCPRF method under the testing dataset. Figures. 3a-3b 

symbolizes the confusion matrices produced by the VTMHSA-RCPRF approach on 80:20 of TRPH/TSPH. The experimental analysis 

implied that the VTMHSA-RCPRF approach has familiar and classified all class labels exactly. Also, Figure. 3c validates the PR curve of the 

VTMHSA-RCPRF technique. The outcome stated that the VTMHSA-RCPRF method has increased maximum efficiency of PR under all 

classes. Lastly, Figure. 3d displays the ROC cruve of the VTMHSA-RCPRF technique. The result signified that the VTMHSA-RCPRF 

algorithm has resulted in effective performances with highest ROC values under various classes. 

In Table 2 and Figure. 8, the Rice-Blast classifier outcomes of the VTMHSA-RCPRF method with 80:20 TRPH/TSPH. The experimental 

analysis designate that the VTMHSA-RCPRF system accurately classified distinct stages. With 80%TRPH, the VTMHSA-RCPRF model 

offers average 98.25%,  97.36% , 98.16% , 99.72% , and 98.27% . Afterward, with 20%TSPH, the 

VTMHSA-RCPRF technique gets average 97.78% , 96.56% , 98.02% , 97.12% , and98.32% . 

 

Table 3. Rice blast outcome of VTMHSA-RCPRF technique with 80:20 TRPH/TSPH 

Class  
 

    

TRPH (80%) 

Healthy 97.20 97.89 99.34 97.61 98.50 

Mild 96.66 96.30 99.43 99.86 97.66 

Moderate 98.89 97.56 97.84 97.70 96.64 

Severe 96.91 95.92 98.78 97.84 98.80 

Average 98.25 97.36 98.16 98.24 99.72 

TSPH (20%) 

Healthy 99.84 97.77 98.97 98.87 98.78 

Mild 98.70 96.47 97.64 95.05 96.87 

Moderate 97.96 98.44 96.88 97.15 95.13 

Severe 96.94 97.79 95.25 98.52 98.49 

Average 97.78 96.56 98.02 97.12 98.32 

 
 

Fig 4. Average of VTMHSA-RCPRF method on 80:20 TRPH/TSPH 

 

 
 

Fig 5.  curve of VTMHSA-RCPRF method at 80:20 TRPH/TSPH 
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In Figure. 5, the training accuracy (TRAC) and validation accuracy (VLAC) outcomes of the VTMHSA-RCPRF model are demonstrated on 

80:20 TRPH/TSPH. The TRAC and VLAC is evaluated over a range of 0-100 epoch counts. The figure emphasizes that the TRAC and 

VLAC values illustrate a rising tendency, which reports the skill of the VTMHSA-RCPRF approach with remarkable outcomes over various 

iterations. Besides, the TRAC and VLAC remain close over the epochs, which specifies low insignificant overfitting and exhibits improved 

performance of the VTMHSA-RCPRF method, assuring constant prediction on unseen samples. 

In Figure. 10, the training loss (TRLS) and validation loss (VLLS) graph of the VTMHSA-RCPRF model is shown under 80:20 

TRPH/TSPH. The TRLS and VLLS values are computed over a range of 0-100 epochs. It is signified that the TRAC and VLAC values 

explain a declining tendency, notifying the effeceincy of the VTMHSA-RCPRF approach to balance a tradeoff between data fitting and 

generalization.  The steady decline in loss values further promises the greater efficiency of the VTMHSA-RCPRF method and tunes the 

prediction outcomes over time. 

 
Fig 6. Loss curve of VTMHSA-RCPRF method at 80:20 TRPH/TSPH 

 

To demonstrate the improved efficiency of the VTMHSA-RCPRF method, a brief comparison analysis is demostrated in Table 3 and Figure 

7.  The experimental study showed that the CNN and VGG19-SVM methods had poorer classification performance. The DenseNet-ISVM 

and ResNet-50 methods have attempted to get somewhat more accurate classification results in the interim. However, the VTMHSA-RCPRF 

technique demonstrates promising performance with 98.82% , 97.87% , 98.27% , and 99.07% . 

 

Table 3. Comparative study of VTMHSA-RCPRF with other technqiues   

Classifiers 
 

   

VTMHSA-RCPRF 98.82 97.87 98.27 99.07 

DenseNet-SVM 
97.13 96.82 97.18 96.70 

ResNet-50 97.13 96.42 98.98 95.70 

CNN 97.96 98.18 95.46 96.32 

VGG19-SVM 96.13 95.26 96.34 97.80 

 

 
 

Fig 7. Comparative outcome of VTMHSA-RCPRF technique with other existing models 
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5. Conclusion 

In this article, we present a new Vision Transformer-based hyperparameter optimization method for earlier recognition and classification of 

paddy leaf diseases in rice field (VTMHSA-RCPRF). The VTMHSA-RCPRF technique has different kinds of procedures such as data 

preprocessing, ViT-based feature extraction, MLP based Focal Loss using classification and detection of healthy and Population Based 

Training (PBT) for hyperparameter tuning process. A wide range of experiments have been carried out to exhibit the remarkable performance 

of the VTMHSA-RCPRF technique. The results highlighted that the VTH-RCPFRF technique reaches better performance over its recent 

approaches in terms of distinct measures. 
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