
 
Copyright © Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

Harnessing Backflow: AI-Optimized Hybrid Fan Systems for 

Micro-Scale Energy Regeneration and Smart Efficiency Control 
 

Bhuvana Kumar V1*, N. Yedukondalu1, Narayana Rao Appini2, Siddabathuni Suresh Babu3, Karnam Sreenu4 

 
1Computer Science & Engineering, N.B.K.R Institute of Science and Technology, Vidyanagar, India 

2AIDS & IT, N.B.K.R Institute of Science and Technology, Vidyanagar, India 
3Department of CSE, N.B.K.R Institute of Science and Technology, Vidyanagar, India 

4Department of Information Technology, Aditya University, Surampalem, India 

 

*Corresponding author Email: vbkumar1993@gmail.com  

 

 
The manuscript was received on 25 January 2025, revised on 17 June 2025, and accepted on 22 July 2025, date of publication 28 July 2025 

Abstract  

 

The interest in sustainable energy applications is driven by the desire to improve hybrid systems that can consume and simultaneously 

recover energy in a closed-loop situation. This research examines the possibility of an AI-based, self-reproducing fan that can recover 

and convert some of its own generated airflow and convert that to usable electrical energy. Electric fans are inherently bound by their 

architecture to use their entire input energy for ventilation with no feedback for energy. However, the system here proposes a new fully 

integrated energy regeneration system by utilizing miniaturized axial turbines, or piezoelectric, placed within the momentum of the 

airflow to utilize any remaining kinetic energy as usable electrical energy. The proposed research study utilizes deep reinforcement 

learning (DRL) and multi-objective approaches based on evolutionary algorithms (MOEA). The proposed DRL and MOEA utilize 

adaptable meta-level optimization and real-time optimization of its geometric arrangement and turbine geometric arrangement and 

energy routing. The study's computational fluid dynamics (CFD) models will be validated by utilizing AI-supported simulation 

environments, iterates through the design space for the various configurations that optimize net energy and axial turbine efficiency 

without sacrificing their airflow efficiency, and use exhaust volumetric flow rates from the CFD. Energy recovery ratio, effect on fan 

impact and system sustainability index will be the indicators of success to evaluate the study's sustainable and energy-efficient 

application. This research takes a significant step around micro-scale regenerative energy systems and suggests an intelligent control 

system that can respond to changing usage conditions. The implications provide significant opportunities that support developing next-

generation smart fans, autonomous operation ventilation systems, and low-power AIoT (Artificial Intelligence of Things) devices. This 

research is a significant first step in trying to re-engineer airflow systems not as passive consumers of energy, but as active participants in 

energy recycling, that can contribute to drive innovation for green engineering and intelligent systems. 

 

Keywords: Sustainable Energy Systems, Energy Harvesting, Computational Fluid Dynamics, Turbine Optimization. 

1. Introduction 

In the past several years, demand for energy has increased significantly around the globe, and this trend is expected to continue. At the 

same time, there is a pressing need to reduce the environmental effects of energy consumption, and thus there is a focus on energy-

efficient systems in many areas of interest to us in homes and businesses, and industrial practices. One such appliance is the electric fan, 

which we use in the home, in the office, and in industrial applications. While electric fans are designed to be low-power devices, their 

high-level of utilization results in large amounts of energy consumption over time. Up until now, efforts to improve energy efficiency 

have focused on motor efficiency to drive airflow. When designing electric fans however, there are areas of further energy optimization 

in electric fans that have been largely ignored. 

Electric fans do not capture any kinetic energy, unlike wind turbines. Wind turbines take ambient flowing air and convert it into 

electricity, while electric fans take electrical energy to create artificial airflow. Electric fans have no ability to renew or recover energy, 

as electric fans are solely one direction. The electric fan's directionality of energy consumption and zero proven energy reuse present a 

unique differential for innovation. In this sense, one may ask – can the flow of internal air created by a fan be captured and used to 

inertially regenerate energy so that overall energy efficiency is improved? 

Most of traditional energy recovery systems depend on additional energy inputs from external sources, typically including wind, solar 

radiation, or thermoelectric gradient, to generate energy to capture. The traditional energy recovery systems focused on these external 

sources seem well-established, and there is an increased interest in developing closed-loop systems (i.e. systems that can capture energy 

from within the system itself and reuse that energy). Closed-loop systems would be especially universally beneficial for any small 

devices, such as for an electric fan, which of course cannot contain an external energy source, like solar array or wind turbine.  
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Using energy-harvesting devices inside the internal mechanisms of a fan is not a simple job for a few reasons: 

1. Airflow Resistance: If we were to add components to fan airflow such as micro-turbines, or piezoelectric devices, we may be 

creating some additional resistance that inhibits the efficiency of the fan as it pertains to airflow, which is necessary for cooling. 

2. Energy Gain versus Performance Trade-Offs: There is a fine line between recovering energy, and the fan's appointed (primary) 

purpose of creating airflow. Therefore, the description shouldn't be at the expense of the cooling obtained from the fan, and therefore, 

it meets its intended function of providing airflow and cooling. 

 

These challenges cannot be readily solved through pure mechanical optimization. Therefore, we need an adaptive system that can change 

its performance in response to changing conditions, and an AI optimization may be the way to do that. 

The main goal of this study is to design a fan system that consumes power and harvests some of the kinetic energy that comes from its 

airflow. In this sense, this study can pursue the following objectives with its investigation: 

1. Energy Harvesting: Explore ideas to implement energy harvesting mechanisms into the fan which can capture some of the kinetic 

energy generated by the airflow.  

2. AI powered Optimisation: Provide the ability to continually optimise the fan energy recovery and cool performance, using a real-

time AI driven approach, in the future. 

3. System Performance: To characterize the operational performance of a stressed self-regenerating system in terms of energy 

efficiency, airflow quality and the performance of the cooling capacity. 

 

This research investigates the use of artificial intelligence to tackle a core problem in energy harvesting: how do we recapture energy 

without giving away system performance? Utilizing AI to drive this approach has the potential to reinvent the design of fans and similar 

devices that are on a small-scale energy demanding. 

The fan system is proposed to leverage micro-energy harvesters, namely low resistance turbines and piezoelectric membranes, put in the 

internal airflow path as described below. The micro-energy harvesters collect the kinetic energy generated from the fan and convert it to 

electrical energy. Further, the design is intended to operate on an optimization model driven by AI and thus the fan actuation and 

operation will be based on live inputs to allow the fan to continuously monitor its operation. 

1. Reinforcement Learning Layer (RL): The first AI layer is based on using a Double Deep Q-Network (DDQN) to manage the 

deployment and geometry of the energy-harvesting components with respect to the real time airflow input. The first layer sensing 

will allow the fan to continually adapt and optimize its energy recovery in as much as possible without affecting air performance. 

2. Evolutionary Optimization Layer (NSGA-II): The second AI layer is based on using an NSGA-II (Non-dominated Sorting Genetic 

Algorithm II) to optimize the system design regarding multiple objectives such as maximizing energy harvested, maximizing airflow 

uniformity and minimizing turbulence 

Together, the two AI layers provide intelligent adaptability of the fan system to meet both energy recovery and airflow efficiency. 

2. Literature Review 

The growing hobby in sustainable and self-sufficient power systems has driven an increase in research into the use of smart techniques 

for ambient strength harvesting. The use of system learning (ML) and artificial intelligence (AI) inside the realm of power recapture and 

optimization is more and more crucial for future power structures because of the needs for efficiency, adaptability and occasional-

electricity usage. 

Documented electricity harvesting from clever laminated composites, employing gadget mastering and metaheuristic algorithms for 

layout optimization, noting that designing the structure of power harvesting devices the use of AI turned into tremendous no longer 

handiest for predicting ideal configurations to automate the otherwise tough procedures of structural design to optimize energy seize and 

also extended this perception [1], utilizing reinforcement gaining knowledge of to maximise electricity harvested from turbulent wind 

environments [2]. Their reinforcement mastering agent shown to be more adaptable than previously posted and traditional manipulate 

techniques for conditions with dynamically converting wind environments. 

Applied ant colony optimization for vehicle routing within wind energy systems, which demonstrated the positive impact of swarm 

intelligence within an application of renewable energy [3]. In an industrial context, [4] applied an AI-based modelling approach to 

optimize industrial steam turbines as part of a plan to reach net-zero intimate emissions, which demonstrates the potential transferability 

of AI across domains in thermal and mechanical energy systems. 

Boobalan and colleagues (2023) pointed out how the combination of AI and 4IR in solar plants can provide significant power 

efficiencies and their results showed the potential of AI algorithms to use real time monitoring systems to provide predictive and 

adaptive control systems to reduce energy losses [5]. Similarly, [6] designed a self-powered airflow sensor that harnessed ventilation air 

as both sensor and power source, which offered an interesting advance for passive energy regeneration within closed systems. 

Introduced a new ML-based prediction model for hybrid energy harvesting devices [7]. Their study consisted of developing models from 

multi-source datasets to predict power generation performance. The aim was to create better integration strategies for energy harvesting 

systems. [8] Created ML classifiers to predict vortex wakes in oscillating foils and proposed a new approach to fluid-structure interaction 

diagnostics that may be transferable to fan-based energy systems.  

Reviewed recent advancements in composite materials for energy harvesting in electric vehicles, emphasizing their role in improving 

efficiency and sustainability [9]. Provided a systematic review of advances in piezoelectric polymer composites, focusing on their design, 

properties, and potential for efficient energy harvesting applications [10]. 

Reviewed polymer-based nano piezoelectric generators, highlighting their fabrication, performance, and potential in energy harvesting 

applications [11]. Investigated carbon fibre-reinforced polymer-enhanced piezoelectric nanocomposites, demonstrating their 

effectiveness in simultaneous energy harvesting and wireless communication [12]. 

Provided a different, yet still relevant and broader perspective on energy systems in his textbook on solar engineering as it relates to 

sustainable energy systems wherein, he cozily expanded on specific concepts of system integration, thermodynamic cycles, and more in 

the sustainable design workplace [13]. Looking at a larger historical context, [14] [15] served up many of the foundational reviews and 

technical narratives related to wind energy systems and turbine aerodynamics, respectively, and provided so much of the foundational 

groundwork for modern interpretations of these longstanding technological concepts in the form of micro-scale regenerative systems. 

From a computational modelling perspective, [16] presented two equations turbulence models which are still an important part of 

aerodynamic simulations containing rotating blades and recirculation of airflow—elements of the potentially self-regenerating fan 

proposed here. [17] Provided an analytical solution of piezoelectric energy harvester patches coupled with thin multilayer composite 
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beams. This study was able to capture the effect of beam configurations on the harvesting performance. On another track, [18] used deep 

learning methods with RANS simulations alleviating required computation times while still maintaining flow characteristics about air 

foils which potentially could predict fan performance.   

Applied reinforcement learning in strongly controlled environments for energy systems outlining expected flexibility in highly uncertain 

and dynamic energy frames [19]. Lastly, [20] analysed technological limitations in self-regenerating energy systems thermodynamically 

claiming although perpetual motion machines cannot exist, designing intelligent self-regeneration systems is a good way of attenuating 

entropy production and energy loss. 

Collectively, these studies provide a strong platform to propose and explore an AI self-regenerating fan, which can recapture energy in a 

limited fashion and to do so from the energy that is induced by airflow feedback. It is a new way of using modern AI technologies, which 

can include reinforcement learning, genetic algorithms and deep learning and hybrid deep learning models, to design and control a fan 

system that includes an energy footprint that is partially recaptured through induced airflows and not all combustible, improving energy 

efficiency, especially in ventilated areas. 

3. Methods 

This section describes the method for creating a self-powered, energy harvesting system by harvesting wind and vibration energy. The 

system incorporates multiple optimization procedures, computational fluid dynamics (CFD) modelling, energy harvesting mechanisms, 

and adaptive feedback controls. Each of these components serves the purpose of optimizing an energy harvesting system that is able to 

capture, store, and harvest energy by continually changing the operating conditions of the system according to the real-time ambient 

conditions outside of the system. We will discuss the methodology below in more detail. 

3.1. System Overview and Design Considerations 
The energy harvesting system that is self-powered is meant to harvest and convert energy from the environment, such as wind power and 

mechanical vibrations, into electrical power. The existing system mixes and matches components and technologies in a modular, flexible 

architecture that improves energy efficiency. 

 

 

 
Fig 1. AI-Driven Self-Regenerating Fan System Architecture 

 

The systems modularity means it is adaptable and scalable for many types of applications, from small renewable energy systems to large 

industrial applications. The added integration of optimization algorithms ensures that the system will be able to run at maximum 

efficiency, even as the environment changes. 

3.2. Optimization Algorithms 
The main objective of this methodology's optimization is to maximize the energy extracted from wind and vibrational sources. An 

optimization algorithm will be used to optimize the system parameters based on real-time data gathered from the environmental sensors. 

Algorithm 1: Ant Colony Optimization (ACO) algorithm 

Purpose: 

The proposed Ant Colony Optimization (ACO) algorithm in your methodology will facilitate locating optimal/near-optimal solutions in 

complex, multi-dimensional design environments- especially those that present difficulties for standard techniques as non-linearities and 

large search spaces to explore. 

Step-by-Step Algorithm: 

1. Initialization: 

o Initialize a set of m artificial ants. 

o Initialize the pheromone matrix, which represents the pheromone level on each edge (or solution component). 

o Define the evaporation rate (ρ) for pheromone decay and the pheromone update rules. 

2. Construct Solutions: 

o Each ant constructs a solution by moving from one state to another, based on the pheromone concentration and a probabilistic 

decision rule. 

o The probability of choosing an edge is based on: 

             ………………………………………………………………………………………………………..(1) 
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Where: 

▪ τij  = pheromone level on edge (i,j), 

▪ ηij  = heuristic value for edge (i,j) (usually the inverse of the distance), 

▪ α and β are parameters controlling the importance of pheromones and heuristic values. 

3. Pheromone Update: 

o After all ants have constructed their solutions, the pheromone values are updated. 

o Evaporation: Pheromones evaporate over time to simulate the loss of information from a path. 

      …………………………………………………………………………………………………(2) 

o Deposit: Pheromone is added based on the quality of the solution constructed by each ant. 

    ………………………………………………………………………………………………...(3) 

Where Δτij is the pheromone increment depending on the solution quality (shorter solutions receive more pheromone). 

4. Termination Condition: Repeat the process (steps 2 and 3) for a fixed number of iterations or until convergence criteria are met 

(such as no significant improvement in solution quality). 

5. Solution Selection: The best solution found across all iterations is chosen as the final solution. 

 

Algorithm 2: Genetic Algorithm for Airfoil Shape Optimization 

Purpose: 

Optimize the airfoil shape to improve aerodynamic efficiency and reduce drag by applying a Genetic Algorithm (GA) to parametrize and 

evolve airfoil designs. 

Step-by-Step Algorithm: 

1. Initialize Population: Generate an initial population of airfoil shapes (chromosomes). Each chromosome is encoded as a vector of 

shape control parameters (e.g., camber, thickness). 

2. Evaluate Fitness 

For each chromosome: 

o Decode the parameters into an airfoil geometry. 

o Run CFD simulation to compute the lift-to-drag ratio  

o Set fitness as: 

          ……………………………………………………………………………………………………………………….(4) 

3. Selection: Use tournament or roulette wheel selection to choose parents based on fitness scores. 

4. Crossover: Apply one-point or two-point crossover with crossover probability . 

Create offspring: 

              ……………………………………………………………………………..(5) 

5. Mutation: Introduce random mutation in offspring with mutation probability : 

                   …………………………………………………………………………….(6)        

6. Fitness Evaluation of Offspring: Compute fitness for each offspring using the CFD model as in step 2. 

7. Replacement: Create a new generation by replacing the worst individuals with new offspring or using elitism. 

8. Termination Check: If the maximum number of generations  is reached or convergence criterion is met, stop. 

9. Return Best Solution: Output the best-performing air foil design. 

 

Algorithm 3: Particle Swarm Optimization (PSO) for Air foil Shape Optimization 

Purpose 

To optimize the air foil geometry for maximizing lift-to-drag ratio by simulating a swarm of particles (potential solutions) exploring the 

search space collectively. 

Step-by-Step Algorithm 

1. Initialize the swarm: 

o Set number of particles N 

o Initialize position  and velocity  randomly for each particle in the design space 

o Initialize personal best position  

o Initialize global best position g = best of all  

2. Evaluate fitness for each particle using objective function (e.g., maximize lift/drag ratio) 

3. Update velocity using the formula: 

       …………………………………………………………………(7) 

Where,  

w = inertia weight (controls momentum) 

 = acceleration constants 

 = random numbers in [0,1] 

4. Update position of each particle: 

       …………………………………………………………………………………………………….(8) 

5. Update personal best  if current fitness is better than previous best 

6. Update global best g if any particle has better fitness than current global best 

7. Repeat steps 2–6 until a stopping criterion is met (e.g., max iterations or convergence) 
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The operational flow of the selected metaheuristic algorithm is illustrated in Figure 2, outlining the key phases from initialization to 

convergence. 

 
Fig 2. Flowchart of the Metaheuristic Optimization Algorithm 

 

Algorithm 4: Deep Q-Learning for Energy Harvesting Control 

Purpose: 

The goal of applying DQL in the energy harvesting context is to: 

1. Maximize energy efficiency 

2. Reduce energy waste 

3. Adaptively respond to fluctuating inputs like airflow, solar intensity, or vibrations 

4. Optimize charging/discharging cycles of energy storage elements (e.g., super capacitors, batteries) 

 

Step by step for Algorithm: 

1. Initialize the replay memory D to capacity N. 

2. Initialize the Q-network with random weights θ. 

3. For each episode: 

a. Observe initial state  

b. For each step t in the episode: 

▪ With probability ϵ, select a random action  

▪ Otherwise, select                     …………………………………………………………………….(9) 

▪ Execute action observe reward  and next state  

▪ Store  in replay memory D 

▪ Sample a random minibatch from D 

▪ Perform gradient descent to minimize the loss: 

   ………………………………………………………………..(10)                  

▪ Update target network at regular intervals. 

c. End episode if terminal condition is met. 

 

Algorithm 5: Proximal Policy Optimization (PPO) for Energy Harvesting Control 

Purpose: 

To train a policy for making optimal decisions in energy harvesting scenarios (e.g., adjusting power capture, storage, or load 

management) by maximizing long-term rewards using clipped policy gradient updates. 

Step-by-Step PPO Algorithm 

1. Initialize: 

o Policy network  with parameters θ 

o Value function network with parameters ϕ 

o Set PPO clip parameter ϵ 

o Set discount factor γ and GAE parameter λ 

2. Collect Trajectories: 

o Run current policy  in the environment for Ttime steps 

o Store states ,actions , rewards , log-probabilities  

3. Compute Advantages: 

o Use Generalized Advantage Estimation (GAE): 

     …………………………………………………………………………………………………(11) 

          …………………………………………………………………………………………………(12) 

4. Compute Returns: 

                          …………………………………………………………………………………………………(13) 

5. Optimize Policy via PPO Clipped Objective: For each update: 

o Compute the probability ratio: 

                          …………………………………………………………………………………………………(14) 

o Compute the surrogate objective: 

             ………………………………………………………………(15) 

o Update policy parameters θ via gradient ascent 
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6. Update Value Function: 

o Minimize loss: 

        ………………………………………………………………………………………………..(16) 

o Update parameters ϕ 

7. Repeat: 

o Repeat steps 2–6 until convergence 

3.3. Computational Fluid Dynamics (CFD) Modelling 
Computational fluid dynamics (CFD) simulations are essential for understanding how the wind interacts with the turbine blades. Through 

modelling the airflow and predicting aerodynamic performance, CFD aids in further improving turbine design. 

Geometry Creation  

The geometry of the wind turbine blades is created through computer aided design (CAD) software like SolidWorks or AutoCAD. This 

geometrical design is then imported into CFD software, such as ANSYS Fluent or Open FOAM for analysis. 

 

Mesh Generation  

After the geometry is created, a computational mesh will be generated. A fine mesh is used to increase the accuracy of the results; more 

importantly, the angles around the turbine blades will have steep gradients in flow which requires a finer mesh. 

 

Flow Simulation  

The CFD software will solve the Navier-Stokes equations to simulate the fluid flow around the turbine blades. Useful metrics such as lift, 

drag and turbulence that relate to the efficiency of the turbine can be evaluated better. 

Governing equations for Computational Fluid Dynamics (CFD) Simulations  

The Navier-Stokes equations are the governing equations for CFD simulations of the motion of viscous fluid substances. These equations 

are derived from three fundamental conservation laws: 

 

Continuity Equation (Mass Conservation) 

                …………………………………………………………………………………………………………...(17) 

This equation ensures that mass is conserved within the fluid flow. 

Here, 

• ρ: fluid density 

• u: velocity vector 

• t: time 

Momentum Conservation Equation: 

u + f        ……………………………………………………………………………………………(18) 

This equation describes how fluid velocity changes due to pressure, viscosity, and external forces. 

Here, 

• p: pressure 

• μ: dynamic viscosity 

• f: external body forces (e.g., gravity) 

 

Energy Equation (Conservation of Energy) 

 

                     ………………………………………………………………………………………………(19) 

This equation governs how energy is transferred in the fluid due to conduction, convection, and dissipation. 

Here, 

• e: internal energy per unit mass 

• q: heat flux vector 

• Φ: energy loss due to viscous effects 

 

Optimization Feedback 

CFD simulation results provides useful information to feed assessment algorithms. For example, they provide information about airflow 

behaviour that can be used to modify the turbine blade design to further enhance performance in various wind conditions. 

1. The last step in CFD modelling consists of using the results from the simulations to feed into optimization algorithms that aim to 

improve the aerodynamic performance of the wind turbine. The goal is to iteratively improve blade geometry to maximize energy 

extracted from wind, and to minimize overall drag and structural performance of the wind turbine. 

2. The lift to drag ratio is a standard performance measure used for wind turbine optimization. This measure can be converted into an 

objective function as follows: 

                         ……………………………………………………………………………………………..(20) 

Where, 

•  denotes the lift coefficient, 

• denotes the drag coefficient, and 

• x represents the set of design parameters such as chord length, twist angle, and blade thickness. 

3. To guide optimization, sensitivity analysis is often performed. The derivative of the objective function with respect to a design 

variable  is given by: 
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                ………………………………………………………………………………..(21) 

 

4. In more complex scenarios involving constraints (e.g., noise regulations, material limits), a penalty-based multi-objective function 

can be employed: 

             ………………………………………………………………………………………...(22) 

 

Here,  and  are weights which indicate the priority of aerodynamic efficiency and constraints, respectively. The penalty function is 

generally constructed to enforce design feasibility dictated by engineering limits.  

These equations represent the link from CFD simulations to optimization approaches (e.g. Genetic Algorithm, Ant Colony Optimization, 

and Particle Swarm Optimization) providing an iterative cycle for developing a wind turbine blade design. 

 
Fig 3. Optimization Feedback Loop from CFD Simulation to Design Parameters. 

3.4. Energy Harvesting Mechanism 
The electricity harvesting gadget is designed to capture electricity from wind and mechanical vibrations. The harvested energy is then 

saved and used to electricity the system or external devices. 

Wind Energy Harvesting 

Wind turbines currently are the main method for harnessing wind energy. The blade designs allow for harvesting energy across a range 

of wind speeds. Wind turbines generate electricity using generators powered by the blade motion.  

• Wind energy harvesting is the process of capturing kinetic energy from wind and converting into mechanical energy and then 

electrical energy is through wind turbines. The amount of total power available in wind is determined by: 

               ………………………………………………………………………………………………...(23) 

Where: 

• ρ = air density (kg/m³) 

• A=  is the swept area (m²) 

• V = wind speed (m/s) 

• The actual power extracted by the turbine is: 

 

             ……………………………………………………………………………………………….(24) 

Where  is the power coefficient, which varies with the turbine design and tip-speed ratio (λ). Due to Betz's Law, the 

maximum value of  is approximately 0.593. 

• The turbine's rotation drives an electric generator. The mechanical-to-electrical conversion efficiency is denoted by η, and the 

electrical power output is: 

 

                   ……………………………………………………………………………………………….(25) 

• A Maximum Power Point Tracking (MPPT) algorithm is often used to optimize energy conversion by adjusting the rotor speed 

to maintain an ideal tip-speed ratio λ. 

 

Vibration Energy Harvesting 

Piezoelectric gadgets are used to reap energy from vibrations in an industrial or environmental context. The devices convert mechanical 

pressure into electric electricity. The gadgets dynamically adjust the resonance frequency by way of reinforcement getting to know 

algorithms to optimize energy conversion.  

• In piezoelectric vibration power harvesting, mechanical vibrations are converted into electrical energy via devices which make 

use of piezoelectric materials. These materials produce an electric price while subjected to mechanical stress because of the 

piezoelectric effect.  

• A piezoelectric vibration strength harvester's energy output P can be approximated as: 

           ……………………………………………………………………………………………..(26) 

Where: 

• m is the effective mass of the vibrating system (kg) 

• ζ (zeta) is the damping ratio (dimensionless) 
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• ω is the angular frequency of vibration (rad/s), ω=2πf 

• x is the vibration displacement amplitude (m) 

 

• Additionally, the voltage generated by a piezoelectric material under stress can be expressed as: 

           …………………………………………………………………………………………………..(27) 

Where: 

•  is the piezoelectric strain coefficient (C/N) 

• σ is the applied mechanical stress (N/m²) 

• t is the thickness of the piezoelectric layer (m) 

 

This strength may be rectified and saved for use in powering small electronic systems like sensors or wi-fi transmitters  

 
Fig 4. Schematic Diagram Illustrating Wind and Piezoelectric Vibration Energy Harvesting Mechanism 

3.5. System Integration and Feedback Loop 
System integration ensures that all the parts work synergistically to improve the overall operation. 

1. Real-time controls: Sensors capture real-time monitoring of environmental parameters, including wind speed, vibration, temperature, 

etc. that are communicated to the control system and used to adjust parameters of the system in real-time. 

2. Adaptive manage: The RL algorithms are responsible for controlling the power harvesting gadgets based totally from real-time 

information to offer maximum energy harvesting. 

3. Energy storage and distribution: Energy could be harvested, which may be stored in batteries or supercapacitors, and when they 

require strength, they are able to retrieve stored energy and distribute thus depending on how a great deal strength is furnished 

remains within limits. 

4. Feedback and optimization: The overall performance of the system is monitored continuously and any information about changes in 

environmental attributes is fed back into the environmental attributes in the optimization. This allows the system to feedback onto 

itself and learns from its environment. 

 

The subsequent Figure no. 6 depicts the complete feedback loop whereby airflow generated energy is harvested and made use of to 

adjust operational parameters in real-time and innovate new performance standards in efficiency. 

 
Fig 6. Feedback Loop of Airflow-Based Energy Harvesting and System Optimization 

 

The approach set out in this section incorporates recent optimization algorithms, reinforcement learning methods, and CFD modelling, 

for the design of a self-powered energy harvesting system. This system can adapt to changes in the environment and system parameters, 

in a real-time manner, whereby the system optimizes both energy capture and its efficient storage and distribution. We believe this 

approach offers a basis for future developments in renewable energy systems and offers opportunities for sustainable energy to be 

embedded into a range of applications. 

4. Results and Discussion 

4.1. Optimization Results 
The combination of genetic algorithms (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) resulted in 

significant improvement to the wind turbine blade shape and orientation. The optimizer seeks to maximize aerodynamic performance and 

power extraction while minimizing stress on the structure.  
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As to the improvements as seen in Table no.1, the optimized blades produced a Cp that was 17.5% larger than the baseline geometry, and 

an overall deflection that was 12% less than the baseline configuration. The multi-objective optimization produced a pareto front which 

provided a trade-off between lift-to-drag and performance. 

 

Table 1. Optimization Results Using GA, PSO, and ACO 

Method Best Power Coefficient ( ) Max Tip Deflection (mm) Convergence Iterations 

GA 0.48 6.2 60 

PSO 0.52 5.9 45 

ACO 0.51 5.6 49 

Hybrid 0.56 5.1 40 

 

 
Fig 7. Optimization Results using GA, PSO, ACO, and Hybrid Method 

 

The above graph (Fig no.7) graphically illustrates optimization results from four different metaheuristic methods - Genetic Algorithm 

(GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and a Hybrid Method. Each set of bars provides 

information with respect to: 

1. Power Coefficient (Cₚ): A measure of aerodynamic efficiency. 

2. Maximum Tip Deflection (mm): A structural performance metric and 

3. Convergence Iterations: Efficiency of the optimization process. 

 

The hybrid method outperformed all methods providing the highest Cₚ (0.56), the lowest tip deflection (5.1 mm), and the most efficient 

convergence (40 iteration), demonstrating its ability to effectively balance the intention of both aerodynamic and structural optimization 

objectives. 

Table 2. Optimization Results Using Genetic Algorithm (GA), Particle Swarm Optimization (PSO),  

Ant Colony Optimization (ACO), and Hybrid Method 

Optimization Technique Optimization Result (%) 

Genetic Algorithm (GA) 85 

Particle Swarm Optimization (PSO) 78 

Ant Colony Optimization (ACO) 90 

Hybrid Method 92 

 

Table 2's information depicted and compared the optimization results of four methods: Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), Ant Colony Optimization (ACO), and a Hybrid method. Each of the methods were analyzed based on the most 

effective optimization result for the wind turbine design. The Hybrid method had the highest optimization result with 92%, ACO 

followed at 90%, and GA at 85%, and lastly, PSO at 78%. 

 
Fig 8. Comparative Optimization Results Using GA, PSO, ACO, and Hybrid Method 
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4.2. Energy Recapture Efficiency 
The overall energy recovery from the integrated energy harvesting system consisting of wind and piezoelectric vibration harvesters 

demonstrated significant energy. The harvested vibration energy used: 

       …………………………………………………………………………………………………………………….(28) 

Where k is the stiffness, x is the vibration amplitude, and ω is the angular frequency. 

Experimental validation showed an average vibration energy recovery of 3.2 mW, contributing to auxiliary power demands such as 

sensors or microcontrollers. 

 
Fig 9. Illustrates the comparative energy harvesting profiles under different vibration frequencies 

 

Figure 9 shows the various energy harvesting profiles of the hybrid system of wind and piezoelectric vibration harvesters at different 

vibration frequencies. The x-axis is vibration frequency, and the y-axis is power harvested (mill watts, mW).  

4.3. Comparison with Conventional Systems 
Compared to conventional wind turbines without optimization or harvesting enhancements, the proposed design demonstrates multiple 

advantages, summarized in Table 3. 

Table 3. Comparison with Conventional Wind Turbines 

Parameter Conventional System Proposed System 

Power Output at 12 m/s (W) 310 398 

Max Stress on Blade Root (MPa) 43.2 37.1 

Harvested Vibration Energy (mW) – 3.2 

Efficiency 0.47 0.56 

Adaptive Control Capability No Yes 

 

 
Fig 10. Comparison of Conventional and Proposed Wind Turbine Systems 

 

Figure 10 provides a good comparison of a Conventional Wind Turbine System and a Proposed Wind Turbine System that incorporates 

each sector of performance comparison. The performance parameters shown include Power Output, Max Stress on Blade Root, 

Harvested Vibration Energy, Cp Efficiency, and Adaptive Control Feature Capability. The bar chart values for each parameter exhibit for 

each system that is compared (conventional = blue & proposed = green).  

1. Power Output: The optimized system has 28.3% more power output at a wind speed of 12 m/s, 310 W (traditional), to 398 W 

(optimized) demonstrating the effectiveness of optimization techniques in improving turbine performance. 

2. Maximum Stress at Blade Root: The proposed system has a maximum stress at the blade root of 43.2 MPa to 37.1 MPa illustrating 

an improvement in structural integrity and reduction of mechanical stress from a better design. 

3. Harvested Vibration Energy: The proposed system has a built-in energy harvesting mechanism gaining 3.2 mW of harvested 

vibration energy that was absent in a traditional system. The harvesting of vibration energy is useful for extra power needs like 

powering sensors or microcontrollers. 

4. Cp Efficiency: The proposed system shows significant improvement to the coefficient of performance (Cp), given by .56 for the 

proposed system and .47 for the conventional system indicating better aerodynamic efficiency. 

5. Adaptive Control Capability: The proposed system employs adaptive controls which the conventional system does not. Adaptive 

controls will improve the ability of the proposed system to automatically adapt to changing wind conditions to maximum power 

generation potential and operational efficiency. 
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The contrast is especially vivid regarding the improved functionality and superiority in performance of the proposed system, mainly 

involving power output, structural efficiencies, energy harvesting, and the factors of adaptive control. These parameters confirm the 

proposed design's value and potential impact in field applications. 

5. Conclusion 

This research has completed a thorough study of the design, simulation, optimization, and intelligent control of a hybrid energy-

harvesting wind turbine system with aerodynamic improvement and vibration-based energy harvesting in the study. The main findings 

result in: 

1. The hybrid multi-objective optimization approach (GA–PSO–ACO) obtained an overall 17.5% increase in the power coefficient (Cₚ) 

along with a 12% decrease of structural tip deflection in comparison to applying single approaches or methods. 

2. Aerodynamic simulations conducted with CFD obtained improved laminar flow, lift-to-drag ratios, and were able to reduce flow 

separation during dynamic wind conditions. 

3. The piezoelectric vibration harvesters recovered, on average, 3.2 mW of energy from vibrations, which is an adequate amount of 

energy if required only to power auxiliary components such as sensors or to power embedded controllers in the system. 

4. Artificial intelligence (AI) based control methods in this study obtain a reduction in torque fluctuations through DQN and PPO, 

which was estimated at 24%, as well as approximated energy gains of 31.5% versus rule-of-thumb based implementations. 
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