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Abstract

The interest in sustainable energy applications is driven by the desire to improve hybrid systems that can consume and simultaneously
recover energy in a closed-loop situation. This research examines the possibility of an Al-based, self-reproducing fan that can recover
and convert some of its own generated airflow and convert that to usable electrical energy. Electric fans are inherently bound by their
architecture to use their entire input energy for ventilation with no feedback for energy. However, the system here proposes a new fully
integrated energy regeneration system by utilizing miniaturized axial turbines, or piezoelectric, placed within the momentum of the
airflow to utilize any remaining kinetic energy as usable electrical energy. The proposed research study utilizes deep reinforcement
learning (DRL) and multi-objective approaches based on evolutionary algorithms (MOEA). The proposed DRL and MOEA utilize
adaptable meta-level optimization and real-time optimization of its geometric arrangement and turbine geometric arrangement and
energy routing. The study's computational fluid dynamics (CFD) models will be validated by utilizing Al-supported simulation
environments, iterates through the design space for the various configurations that optimize net energy and axial turbine efficiency
without sacrificing their airflow efficiency, and use exhaust volumetric flow rates from the CFD. Energy recovery ratio, effect on fan
impact and system sustainability index will be the indicators of success to evaluate the study's sustainable and energy-efficient
application. This research takes a significant step around micro-scale regenerative energy systems and suggests an intelligent control
system that can respond to changing usage conditions. The implications provide significant opportunities that support developing next-
generation smart fans, autonomous operation ventilation systems, and low-power AloT (Artificial Intelligence of Things) devices. This
research is a significant first step in trying to re-engineer airflow systems not as passive consumers of energy, but as active participants in
energy recycling, that can contribute to drive innovation for green engineering and intelligent systems.

Keywords: Sustainable Energy Systems, Energy Harvesting, Computational Fluid Dynamics, Turbine Optimization.

1. Introduction

In the past several years, demand for energy has increased significantly around the globe, and this trend is expected to continue. At the
same time, there is a pressing need to reduce the environmental effects of energy consumption, and thus there is a focus on energy-
efficient systems in many areas of interest to us in homes and businesses, and industrial practices. One such appliance is the electric fan,
which we use in the home, in the office, and in industrial applications. While electric fans are designed to be low-power devices, their
high-level of utilization results in large amounts of energy consumption over time. Up until now, efforts to improve energy efficiency
have focused on motor efficiency to drive airflow. When designing electric fans however, there are areas of further energy optimization
in electric fans that have been largely ignored.

Electric fans do not capture any kinetic energy, unlike wind turbines. Wind turbines take ambient flowing air and convert it into
electricity, while electric fans take electrical energy to create artificial airflow. Electric fans have no ability to renew or recover energy,
as electric fans are solely one direction. The electric fan's directionality of energy consumption and zero proven energy reuse present a
unique differential for innovation. In this sense, one may ask — can the flow of internal air created by a fan be captured and used to
inertially regenerate energy so that overall energy efficiency is improved?

Most of traditional energy recovery systems depend on additional energy inputs from external sources, typically including wind, solar
radiation, or thermoelectric gradient, to generate energy to capture. The traditional energy recovery systems focused on these external
sources seem well-established, and there is an increased interest in developing closed-loop systems (i.e. systems that can capture energy
from within the system itself and reuse that energy). Closed-loop systems would be especially universally beneficial for any small
devices, such as for an electric fan, which of course cannot contain an external energy source, like solar array or wind turbine.
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Using energy-harvesting devices inside the internal mechanisms of a fan is not a simple job for a few reasons:

1. Airflow Resistance: If we were to add components to fan airflow such as micro-turbines, or piezoelectric devices, we may be
creating some additional resistance that inhibits the efficiency of the fan as it pertains to airflow, which is necessary for cooling.

2. Energy Gain versus Performance Trade-Offs: There is a fine line between recovering energy, and the fan's appointed (primary)
purpose of creating airflow. Therefore, the description shouldn't be at the expense of the cooling obtained from the fan, and therefore,
it meets its intended function of providing airflow and cooling.

These challenges cannot be readily solved through pure mechanical optimization. Therefore, we need an adaptive system that can change

its performance in response to changing conditions, and an Al optimization may be the way to do that.

The main goal of this study is to design a fan system that consumes power and harvests some of the kinetic energy that comes from its

airflow. In this sense, this study can pursue the following objectives with its investigation:

1. Energy Harvesting: Explore ideas to implement energy harvesting mechanisms into the fan which can capture some of the kinetic
energy generated by the airflow.

2. Al powered Optimisation: Provide the ability to continually optimise the fan energy recovery and cool performance, using a real-
time Al driven approach, in the future.

3. System Performance: To characterize the operational performance of a stressed self-regenerating system in terms of energy
efficiency, airflow quality and the performance of the cooling capacity.

This research investigates the use of artificial intelligence to tackle a core problem in energy harvesting: how do we recapture energy
without giving away system performance? Utilizing Al to drive this approach has the potential to reinvent the design of fans and similar
devices that are on a small-scale energy demanding.

The fan system is proposed to leverage micro-energy harvesters, namely low resistance turbines and piezoelectric membranes, put in the

internal airflow path as described below. The micro-energy harvesters collect the kinetic energy generated from the fan and convert it to

electrical energy. Further, the design is intended to operate on an optimization model driven by Al and thus the fan actuation and
operation will be based on live inputs to allow the fan to continuously monitor its operation.

1. Reinforcement Learning Layer (RL): The first Al layer is based on using a Double Deep Q-Network (DDQN) to manage the
deployment and geometry of the energy-harvesting components with respect to the real time airflow input. The first layer sensing
will allow the fan to continually adapt and optimize its energy recovery in as much as possible without affecting air performance.

2. Evolutionary Optimization Layer (NSGA-II): The second Al layer is based on using an NSGA-II (Non-dominated Sorting Genetic
Algorithm II) to optimize the system design regarding multiple objectives such as maximizing energy harvested, maximizing airflow
uniformity and minimizing turbulence

Together, the two Al layers provide intelligent adaptability of the fan system to meet both energy recovery and airflow efficiency.

2. Literature Review

The growing hobby in sustainable and self-sufficient power systems has driven an increase in research into the use of smart techniques
for ambient strength harvesting. The use of system learning (ML) and artificial intelligence (Al) inside the realm of power recapture and
optimization is more and more crucial for future power structures because of the needs for efficiency, adaptability and occasional-
electricity usage.

Documented electricity harvesting from clever laminated composites, employing gadget mastering and metaheuristic algorithms for
layout optimization, noting that designing the structure of power harvesting devices the use of Al turned into tremendous no longer
handiest for predicting ideal configurations to automate the otherwise tough procedures of structural design to optimize energy seize and
also extended this perception [1], utilizing reinforcement gaining knowledge of to maximise electricity harvested from turbulent wind
environments [2]. Their reinforcement mastering agent shown to be more adaptable than previously posted and traditional manipulate
techniques for conditions with dynamically converting wind environments.

Applied ant colony optimization for vehicle routing within wind energy systems, which demonstrated the positive impact of swarm
intelligence within an application of renewable energy [3]. In an industrial context, [4] applied an Al-based modelling approach to
optimize industrial steam turbines as part of a plan to reach net-zero intimate emissions, which demonstrates the potential transferability
of Al across domains in thermal and mechanical energy systems.

Boobalan and colleagues (2023) pointed out how the combination of Al and 4IR in solar plants can provide significant power
efficiencies and their results showed the potential of Al algorithms to use real time monitoring systems to provide predictive and
adaptive control systems to reduce energy losses [5]. Similarly, [6] designed a self-powered airflow sensor that harnessed ventilation air
as both sensor and power source, which offered an interesting advance for passive energy regeneration within closed systems.

Introduced a new ML-based prediction model for hybrid energy harvesting devices [7]. Their study consisted of developing models from
multi-source datasets to predict power generation performance. The aim was to create better integration strategies for energy harvesting
systems. [8] Created ML classifiers to predict vortex wakes in oscillating foils and proposed a new approach to fluid-structure interaction
diagnostics that may be transferable to fan-based energy systems.

Reviewed recent advancements in composite materials for energy harvesting in electric vehicles, emphasizing their role in improving
efficiency and sustainability [9]. Provided a systematic review of advances in piezoelectric polymer composites, focusing on their design,
properties, and potential for efficient energy harvesting applications [10].

Reviewed polymer-based nano piezoelectric generators, highlighting their fabrication, performance, and potential in energy harvesting
applications [11]. Investigated carbon fibre-reinforced polymer-enhanced piezoelectric nanocomposites, demonstrating their
effectiveness in simultaneous energy harvesting and wireless communication [12].

Provided a different, yet still relevant and broader perspective on energy systems in his textbook on solar engineering as it relates to
sustainable energy systems wherein, he cozily expanded on specific concepts of system integration, thermodynamic cycles, and more in
the sustainable design workplace [13]. Looking at a larger historical context, [14] [15] served up many of the foundational reviews and
technical narratives related to wind energy systems and turbine aerodynamics, respectively, and provided so much of the foundational
groundwork for modern interpretations of these longstanding technological concepts in the form of micro-scale regenerative systems.
From a computational modelling perspective, [16] presented two equations turbulence models which are still an important part of
aerodynamic simulations containing rotating blades and recirculation of airflow—elements of the potentially self-regenerating fan
proposed here. [17] Provided an analytical solution of piezoelectric energy harvester patches coupled with thin multilayer composite
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beams. This study was able to capture the effect of beam configurations on the harvesting performance. On another track, [18] used deep
learning methods with RANS simulations alleviating required computation times while still maintaining flow characteristics about air
foils which potentially could predict fan performance.

Applied reinforcement learning in strongly controlled environments for energy systems outlining expected flexibility in highly uncertain
and dynamic energy frames [19]. Lastly, [20] analysed technological limitations in self-regenerating energy systems thermodynamically
claiming although perpetual motion machines cannot exist, designing intelligent self-regeneration systems is a good way of attenuating
entropy production and energy loss.

Collectively, these studies provide a strong platform to propose and explore an Al self-regenerating fan, which can recapture energy in a
limited fashion and to do so from the energy that is induced by airflow feedback. It is a new way of using modern Al technologies, which
can include reinforcement learning, genetic algorithms and deep learning and hybrid deep learning models, to design and control a fan
system that includes an energy footprint that is partially recaptured through induced airflows and not all combustible, improving energy
efficiency, especially in ventilated areas.

3. Methods

This section describes the method for creating a self-powered, energy harvesting system by harvesting wind and vibration energy. The
system incorporates multiple optimization procedures, computational fluid dynamics (CFD) modelling, energy harvesting mechanisms,
and adaptive feedback controls. Each of these components serves the purpose of optimizing an energy harvesting system that is able to
capture, store, and harvest energy by continually changing the operating conditions of the system according to the real-time ambient
conditions outside of the system. We will discuss the methodology below in more detail.

3.1. System Overview and Design Considerations

The energy harvesting system that is self-powered is meant to harvest and convert energy from the environment, such as wind power and
mechanical vibrations, into electrical power. The existing system mixes and matches components and technologies in a modular, flexible
architecture that improves energy efficiency.

Piezoelectric
Devices

Sensors <

Energy
Storage

Fig 1. Al-Driven Self-Regenerating Fan System Architecture

The systems modularity means it is adaptable and scalable for many types of applications, from small renewable energy systems to large
industrial applications. The added integration of optimization algorithms ensures that the system will be able to run at maximum
efficiency, even as the environment changes.

3.2. Optimization Algorithms
The main objective of this methodology's optimization is to maximize the energy extracted from wind and vibrational sources. An
optimization algorithm will be used to optimize the system parameters based on real-time data gathered from the environmental sensors.
Algorithm 1: Ant Colony Optimization (ACO) algorithm
Purpose:
The proposed Ant Colony Optimization (ACO) algorithm in your methodology will facilitate locating optimal/near-optimal solutions in
complex, multi-dimensional design environments- especially those that present difficulties for standard techniques as non-linearities and
large search spaces to explore.
Step-by-Step Algorithm:
1. Initialization:
o Initialize a set of m artificial ants.
o Initialize the pheromone matrix, which represents the pheromone level on each edge (or solution component).
o Define the evaporation rate (p) for pheromone decay and the pheromone update rules.
2. Construct Solutions:
o Each ant constructs a solution by moving from one state to another, based on the pheromone concentration and a probabilistic
decision rule.
o The probability of choosing an edge is based on:
)y
T ) )
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Where:
= i = pheromone level on edge (i,)),
= 1 = heuristic value for edge (i,j) (usually the inverse of the distance),
= qand P are parameters controlling the importance of pheromones and heuristic values.
3. Pheromone Update:
o After all ants have constructed their solutions, the pheromone values are updated.
o Evaporation: Pheromones evaporate over time to simulate the loss of information from a path.

LT L e ) I o )
o Deposit: Pheromone is added based on the quality of the solution constructed by each ant.
Tt 1) S T{E F 1) AT o 3)

Where At;j is the pheromone increment depending on the solution quality (shorter solutions receive more pheromone).

4. Termination Condition: Repeat the process (steps 2 and 3) for a fixed number of iterations or until convergence criteria are met
(such as no significant improvement in solution quality).

5. Solution Selection: The best solution found across all iterations is chosen as the final solution.

Algorithm 2: Genetic Algorithm for Airfoil Shape Optimization

Purpose:

Optimize the airfoil shape to improve aerodynamic efficiency and reduce drag by applying a Genetic Algorithm (GA) to parametrize and

evolve airfoil designs.

Step-by-Step Algorithm:

1. Initialize Population: Generate an initial population of airfoil shapes (chromosomes). Each chromosome is encoded as a vector of
shape control parameters (e.g., camber, thickness).

2. Evaluate Fitness
For each chromosome:

o) Decode the parameters into an airfoil geometry.
. . . .
o) Run CFD simulation to compute the lift-to-drag ratio r:_l
o
o Set fitness as:
- _ L
fi= D, T “

3. Selection: Use tournament or roulette wheel selection to choose parents based on fitness scores.
4. Crossover: Apply one-point or two-point crossover with crossover probability F..

Create offspring:
Of fspring; = Crossover(Parenty, PAremta] e )

5. Mutation: Introduce random mutation in offspring with mutation probability B.:
GE?!Ej-r = Geng;j+ §  whered ~ N(D.0) 6)
Fitness Evaluation of Offspring: Compute fitness for each offspring using the CFD model as in step 2.

Replacement: Create a new generation by replacing the worst individuals with new offspring or using elitism.
Termination Check: If the maximum number of generations (. is reached or convergence criterion is met, stop.

Return Best Solution: Output the best-performing air foil design.

O XA

Algorithm 3: Particle Swarm Optimization (PSO) for Air foil Shape Optimization
Purpose
To optimize the air foil geometry for maximizing lift-to-drag ratio by simulating a swarm of particles (potential solutions) exploring the
search space collectively.
Step-by-Step Algorithm
1. Initialize the swarm:
o Set number of particles N
o Initialize position x; and velocity 1; randomly for each particle in the design space
o Initialize personal best position p; = x;
o Initialize global best position g = best of all p;
2. Evaluate fitness for each particle using objective function (e.g., maximize lift/drag ratio)
3. Update velocity using the formula:
vilt + 1) = w8+ oprn(pr — 00 ) 4 eamn @ — 5 (E)) (7

Where,
w = inertia weight (controls momentum)
£, €2 = acceleration constants

7}, 7> = random numbers in [0,1]
4. Update position of each particle:
B ) B g I o T 1 PPNt ®)
5. Update personal best p; if current fitness is better than previous best

Update global best g if any particle has better fitness than current global best
7. Repeat steps 2—6 until a stopping criterion is met (e.g., max iterations or convergence)

A
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The operational flow of the selected metaheuristic algorithm is illustrated in Figure 2, outlining the key phases from initialization to

convergence.
Airflow
Fitness
Action i i

Evolution

Design
Variables

Fig 2. Flowchart of the Metaheuristic Optimization Algorithm

Algorithm 4: Deep Q-Learning for Energy Harvesting Control

Purpose:

The goal of applying DQL in the energy harvesting context is to:

1. Maximize energy efficiency

2. Reduce energy waste

3. Adaptively respond to fluctuating inputs like airflow, solar intensity, or vibrations

4. Optimize charging/discharging cycles of energy storage elements (e.g., super capacitors, batteries)

Step by step for Algorithm:
1. Initialize the replay memory D to capacity N.
2. Initialize the Q-network with random weights 6.
3. For each episode:
a. Observe initial state 5,
b. For each step t in the episode:
= With probability €, select a random action
= Otherwise, select @, = arg max, (s a:8)
= Execute action @ observe reward r; and next state 5., ;
= Store (¢, g e 5¢ 4.1 ) in replay memory D
= Sample a random minibatch from D
= Perform gradient descent to minimize the loss:
L(B) = Erzgrenlr+rmax@(s’a"t87) — Q8.0 8)0%] oo (10)
= Update target network B7at regular intervals.
c. End episode if terminal condition is met.

Algorithm 5: Proximal Policy Optimization (PPO) for Energy Harvesting Control
Purpose:
To train a policy for making optimal decisions in energy harvesting scenarios (e.g., adjusting power capture, storage, or load
management) by maximizing long-term rewards using clipped policy gradient updates.
Step-by-Step PPO Algorithm
1. Initialize:
o Policy network mg with parameters 6
O Value function network ¥ with parameters ¢
o Set PPO clip parameter €
o Set discount factor y and GAE parameter A
2. Collect Trajectories:
o Run current policy Ty in the environment for Ttime steps
o Store statess;,actions,, rewardsry, log-probabilities lag mgla,| s, }
3. Compute Advantages:
o Use Generalized Advantage Estimation (GAE):
B = e YV S 1 = F o) i e (11)

A B W0 L ™ e e e e (12)
4. Compute Returns:
L - T PPN PUPTTR (13)
5. Optimize Policy via PPO Clipped Objective: For each update:
o Compute thel probability ratio:
. _ Walddsd
(8] = e E (14)
o Compute the surrogate objective:
LU gy = E Imin(r (@04 cliplr(B0 L — & 14+ €000 (15)

o Update policy parameters 0 via gradient ascent
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6. Update Value Function:
o Minimize loss:

L) = B [(Valse) = Be)T] oo (16)
o Update parameters ¢
7. Repeat:

o Repeat steps 2—6 until convergence

3.3. Computational Fluid Dynamics (CFD) Modelling

Computational fluid dynamics (CFD) simulations are essential for understanding how the wind interacts with the turbine blades. Through
modelling the airflow and predicting aerodynamic performance, CFD aids in further improving turbine design.

Geometry Creation

The geometry of the wind turbine blades is created through computer aided design (CAD) software like SolidWorks or AutoCAD. This
geometrical design is then imported into CFD software, such as ANSYS Fluent or Open FOAM for analysis.

Mesh Generation
After the geometry is created, a computational mesh will be generated. A fine mesh is used to increase the accuracy of the results; more
importantly, the angles around the turbine blades will have steep gradients in flow which requires a finer mesh.

Flow Simulation

The CFD software will solve the Navier-Stokes equations to simulate the fluid flow around the turbine blades. Useful metrics such as lift,
drag and turbulence that relate to the efficiency of the turbine can be evaluated better.

Governing equations for Computational Fluid Dynamics (CFD) Simulations

The Navier-Stokes equations are the governing equations for CFD simulations of the motion of viscous fluid substances. These equations
are derived from three fundamental conservation laws:

Continuity Equation (Mass Conservation)

dp - \

Fri T T o e a7
This equation ensures that mass is conserved within the fluid flow.

Here,

e p: fluid density
e u: velocity vector
e t:time
Momentum Conservation Equation:
p(%+i':e Fu :]: T U E (18)

This equation describes how fluid velocity changes due to pressure, viscosity, and external forces.
Here,

e p:pressure

e w: dynamic viscosity

e f: external body forces (e.g., gravity)

Energy Equation (Conservation of Energy)

PIEHUTE) = — 7.0+ @ e (19)

This equation governs how energy is transferred in the fluid due to conduction, convection, and dissipation.
Here,

e ¢ internal energy per unit mass

e q: heat flux vector

e @: energy loss due to viscous effects

Optimization Feedback

CFD simulation results provides useful information to feed assessment algorithms. For example, they provide information about airflow

behaviour that can be used to modify the turbine blade design to further enhance performance in various wind conditions.

1. The last step in CFD modelling consists of using the results from the simulations to feed into optimization algorithms that aim to
improve the aerodynamic performance of the wind turbine. The goal is to iteratively improve blade geometry to maximize energy
extracted from wind, and to minimize overall drag and structural performance of the wind turbine.

2. The lift to drag ratio is a standard performance measure used for wind turbine optimization. This measure can be converted into an
objective function as follows:

e _ Gl
Maximize: fix) = DoH (20)
Where,
. ;ix) denotes the lift coefficient,

o Cpix)denotes the drag coefficient, and

o x represents the set of design parameters such as chord length, twist angle, and blade thickness.
3. To guide optimization, sensitivity analysis is often performed. The derivative of the objective function with respect to a design
variable x; is given by:
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4. In more complex scenarios involving constraints (e.g., noise regulations, material limits), a penalty-based multi-objective function
can be employed:

Fix) =w,. (E—"] — W P ) i e (22)
»
Here, w, and w, are weights which indicate the priority of aecrodynamic efficiency and constraints, respectively. The penalty function is

generally constructed to enforce design feasibility dictated by engineering limits.
These equations represent the link from CFD simulations to optimization approaches (e.g. Genetic Algorithm, Ant Colony Optimization,
and Particle Swarm Optimization) providing an iterative cycle for developing a wind turbine blade design.

Fig 3. Optimization Feedback Loop from CFD Simulation to Design Parameters.

3.4. Energy Harvesting Mechanism
The electricity harvesting gadget is designed to capture electricity from wind and mechanical vibrations. The harvested energy is then
saved and used to electricity the system or external devices.
Wind Energy Harvesting
Wind turbines currently are the main method for harnessing wind energy. The blade designs allow for harvesting energy across a range
of wind speeds. Wind turbines generate electricity using generators powered by the blade motion.

e Wind energy harvesting is the process of capturing kinetic energy from wind and converting into mechanical energy and then

electrical energy is through wind turbines. The amount of total power available in wind is determined by:

L P
Biing = 3 P T e (23)

Where:
e  p=air density (kg/m?)
e A=TR"isthe swept area (m?)
e V=wind speed (m/s)
e The actual power extracted by the turbine is:

L 73
Prurbine = CpIPAVT 24)
Where L, is the power coefficient, which varies with the turbine design and tip-speed ratio (A). Due to Betz's Law, the
maximum value of Ly, is approximately 0.593.

e  The turbine's rotation drives an electric generator. The mechanical-to-electrical conversion efficiency is denoted by 1, and the
electrical power output is:

'PF‘I-FT =1 'Pfi.!i’ii'l'i’!F ............................................................................................................. (25)

e A Maximum Power Point Tracking (MPPT) algorithm is often used to optimize energy conversion by adjusting the rotor speed
to maintain an ideal tip-speed ratio A.

Vibration Energy Harvesting

Piezoelectric gadgets are used to reap energy from vibrations in an industrial or environmental context. The devices convert mechanical
pressure into electric electricity. The gadgets dynamically adjust the resonance frequency by way of reinforcement getting to know
algorithms to optimize energy conversion.

e In piezoelectric vibration power harvesting, mechanical vibrations are converted into electrical energy via devices which make
use of piezoelectric materials. These materials produce an electric price while subjected to mechanical stress because of the
piezoelectric effect.

e A piezoelectric vibration strength harvester's energy output P can be approximated as:

B o= I T e (26)

Where:
e mis the effective mass of the vibrating system (kg)
e ((zeta) is the damping ratio (dimensionless)
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e o is the angular frequency of vibration (rad/s), @=2nf
e X is the vibration displacement amplitude (m)

e  Additionally, the voltage generated by a piezoelectric material under stress can be expressed as:
o g L e e e 27

Where:
e g is the piezoelectric strain coefficient (C/N)

e . is the applied mechanical stress (N/m?)
e tis the thickness of the piezoelectric layer (m)

This strength may be rectified and saved for use in powering small electronic systems like sensors or wi-fi transmitters

m
Electric Pc?v_ver )
Generator Conditioning w
and Storage
x
1 Piezoelectric
- = 2
Froma = 2 PAY Vibration Energy
Harvester

1 3

Piurbine = CP'E pAV 1
p— = 2.2

Peoiee = M - Prurbine 2 mewsx

((lé T

V = dss.o.t
Energy 33-9
Storage

Fig 4. Schematic Diagram Illustrating Wind and Piezoelectric Vibration Energy Harvesting Mechanism

3.5. System Integration and Feedback Loop

System integration ensures that all the parts work synergistically to improve the overall operation.

1. Real-time controls: Sensors capture real-time monitoring of environmental parameters, including wind speed, vibration, temperature,
etc. that are communicated to the control system and used to adjust parameters of the system in real-time.

2. Adaptive manage: The RL algorithms are responsible for controlling the power harvesting gadgets based totally from real-time
information to offer maximum energy harvesting.

3. Energy storage and distribution: Energy could be harvested, which may be stored in batteries or supercapacitors, and when they
require strength, they are able to retrieve stored energy and distribute thus depending on how a great deal strength is furnished
remains within limits.

4. Feedback and optimization: The overall performance of the system is monitored continuously and any information about changes in
environmental attributes is fed back into the environmental attributes in the optimization. This allows the system to feedback onto
itself and learns from its environment.

The subsequent Figure no. 6 depicts the complete feedback loop whereby airflow generated energy is harvested and made use of to
adjust operational parameters in real-time and innovate new performance standards in efficiency.

Micro -
Battery

!

\ /
P / \ Miecro Energy Decision
( } Y ) [ Energy ] [ Conversion ] Algorithm

Harvesters AC/DC

o
-
egpa]

Auxiliary
Systems

i

Fig 6. Feedback Loop of Airflow-Based Energy Harvesting and System Optimization

The approach set out in this section incorporates recent optimization algorithms, reinforcement learning methods, and CFD modelling,
for the design of a self-powered energy harvesting system. This system can adapt to changes in the environment and system parameters,
in a real-time manner, whereby the system optimizes both energy capture and its efficient storage and distribution. We believe this
approach offers a basis for future developments in renewable energy systems and offers opportunities for sustainable energy to be
embedded into a range of applications.

4. Results and Discussion

4.1. Optimization Results

The combination of genetic algorithms (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) resulted in
significant improvement to the wind turbine blade shape and orientation. The optimizer seeks to maximize aerodynamic performance and
power extraction while minimizing stress on the structure.
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As to the improvements as seen in Table no.1, the optimized blades produced a C, that was 17.5% larger than the baseline geometry, and
an overall deflection that was 12% less than the baseline configuration. The multi-objective optimization produced a pareto front which
provided a trade-off between lift-to-drag and performance.

Table 1. Optimization Results Using GA, PSO, and ACO
Method ~ Best Power Coefficient (C,) ~ Max Tip Deflection (mm)  Convergence Iterations

GA 0.48 6.2 60
PSO 0.52 5.9 45
ACO 0.51 5.6 49

Hybrid 0.56 5.1 40

Optimization Results Using GA, PSO, ACO, and Hybrid Method

60 -
= Tip Deflection {mm)
mmm Convergence Iterations

GA PSO ACO Hybrid
Optimization Method

Fig 7. Optimization Results using GA, PSO, ACO, and Hybrid Method

The above graph (Fig no.7) graphically illustrates optimization results from four different metaheuristic methods - Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and a Hybrid Method. Each set of bars provides
information with respect to:

1. Power Coefficient (C,): A measure of aerodynamic efficiency.

2. Maximum Tip Deflection (mm): A structural performance metric and

3. Convergence Iterations: Efficiency of the optimization process.

The hybrid method outperformed all methods providing the highest C, (0.56), the lowest tip deflection (5.1 mm), and the most efficient
convergence (40 iteration), demonstrating its ability to effectively balance the intention of both aerodynamic and structural optimization
objectives.
Table 2. Optimization Results Using Genetic Algorithm (GA), Particle Swarm Optimization (PSO),
Ant Colony Optimization (ACO), and Hybrid Method

Optimization Technique Optimization Result (%)
Genetic Algorithm (GA) 85
Particle Swarm Optimization (PSO) 78
Ant Colony Optimization (ACO) 90
Hybrid Method 92

Table 2's information depicted and compared the optimization results of four methods: Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO), and a Hybrid method. Each of the methods were analyzed based on the most
effective optimization result for the wind turbine design. The Hybrid method had the highest optimization result with 92%, ACO
followed at 90%, and GA at 85%, and lastly, PSO at 78%.
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Fig 8. Comparative Optimization Results Using GA, PSO, ACO, and Hybrid Method
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4.2. Energy Recapture Efficiency

The overall energy recovery from the integrated energy harvesting system consisting of wind and piezoelectric vibration harvesters
demonstrated significant energy. The harvested vibration energy used:

F= ér'c.r:m:R
Where k is the stiffness, x is the vibration amplitude, and o is the angular frequency.

Experimental validation showed an average vibration energy recovery of 3.2 mW, contributing to auxiliary power demands such as
sensors or microcontrollers.

Energy Harvesting Profiles Under Different Vibration Frequencies

—e— Harvested Energy

Harvested Energy (mW)

10 1s 20 25 30 35 40 45 50
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Fig 9. Illustrates the comparative energy harvesting profiles under different vibration frequencies

Figure 9 shows the various energy harvesting profiles of the hybrid system of wind and piezoelectric vibration harvesters at different
vibration frequencies. The x-axis is vibration frequency, and the y-axis is power harvested (mill watts, mW).

4.3. Comparison with Conventional Systems
Compared to conventional wind turbines without optimization or harvesting enhancements, the proposed design demonstrates multiple
advantages, summarized in Table 3.

Table 3. Comparison with Conventional Wind Turbines

Parameter Conventional System Proposed System
Power Output at 12 m/s (W) 310 398
Max Stress on Blade Root (MPa) 43.2 37.1
Harvested Vibration Energy (mW) - 3.2
C,Efficiency 0.47 0.56
Adaptive Control Capability No Yes

Comparison of Conventional and Proposed Wind Turbine Systems

39800

= Conventional System
. Proposed System

Values

43.20 3719

Parameters

Fig 10. Comparison of Conventional and Proposed Wind Turbine Systems

Figure 10 provides a good comparison of a Conventional Wind Turbine System and a Proposed Wind Turbine System that incorporates

each sector of performance comparison. The performance parameters shown include Power Output, Max Stress on Blade Root,

Harvested Vibration Energy, C, Efficiency, and Adaptive Control Feature Capability. The bar chart values for each parameter exhibit for

each system that is compared (conventional = blue & proposed = green).

1. Power Output: The optimized system has 28.3% more power output at a wind speed of 12 m/s, 310 W (traditional), to 398 W
(optimized) demonstrating the effectiveness of optimization techniques in improving turbine performance.

2. Maximum Stress at Blade Root: The proposed system has a maximum stress at the blade root of 43.2 MPa to 37.1 MPa illustrating
an improvement in structural integrity and reduction of mechanical stress from a better design.

3. Harvested Vibration Energy: The proposed system has a built-in energy harvesting mechanism gaining 3.2 mW of harvested
vibration energy that was absent in a traditional system. The harvesting of vibration energy is useful for extra power needs like
powering sensors or microcontrollers.

4. C, Efficiency: The proposed system shows significant improvement to the coefficient of performance (Cp), given by .56 for the
proposed system and .47 for the conventional system indicating better aerodynamic efficiency.

5. Adaptive Control Capability: The proposed system employs adaptive controls which the conventional system does not. Adaptive
controls will improve the ability of the proposed system to automatically adapt to changing wind conditions to maximum power
generation potential and operational efficiency.
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The contrast is especially vivid regarding the improved functionality and superiority in performance of the proposed system, mainly
involving power output, structural efficiencies, energy harvesting, and the factors of adaptive control. These parameters confirm the
proposed design's value and potential impact in field applications.

5. Conclusion

This research has completed a thorough study of the design, simulation, optimization, and intelligent control of a hybrid energy-
harvesting wind turbine system with aerodynamic improvement and vibration-based energy harvesting in the study. The main findings
result in:

1.

The hybrid multi-objective optimization approach (GA-PSO-ACO) obtained an overall 17.5% increase in the power coefficient (Cp)
along with a 12% decrease of structural tip deflection in comparison to applying single approaches or methods.

2. Aerodynamic simulations conducted with CFD obtained improved laminar flow, lift-to-drag ratios, and were able to reduce flow

separation during dynamic wind conditions.

3. The piezoelectric vibration harvesters recovered, on average, 3.2 mW of energy from vibrations, which is an adequate amount of

energy if required only to power auxiliary components such as sensors or to power embedded controllers in the system.

4. Atrtificial intelligence (AI) based control methods in this study obtain a reduction in torque fluctuations through DQN and PPO,

which was estimated at 24%, as well as approximated energy gains of 31.5% versus rule-of-thumb based implementations.
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