

Copyright © Authors. This is an open access article distributed under the CreativeCommonsAttributionLicense, which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.

Multi-Hop Signal Transmission Patterns in Oracle APEX-Based

Monitoring Systems with Dynamic IoT Feedback Loops

Srikanth Reddy Keshireddy

Senior Software Engineer, Keen Info Tek Inc., United States

*Corresponding author Email: sreek.278@gmail.com

The manuscript was received on 25 June 2024, revised on 24 September 2024, and accepted on 28 January 2025, date of publication 6 May 2025

Abstract

This investigation maps how multi-hop signals travel through Oracle APEX monitoring architectures while absorbing real-time feedback

from distributed IoT devices. It reproduces, in code, the relay of packets between nodes and sketches the tilt of delivery rates when loss,

spacing, and retransmission limits shift with the network load. The platform weaves SAP telemetry with Honeycomb Oracle APEX

dashboards and MQTT feedback loops, then pours those streams into a simulation engine that spits out curves for signal sag, loop

latency, and feedback turnaround. Raw numbers show that tuning the retransmit count and watching hop-length can swing reliability

figures almost one-to-one, while edge-smart loops clipped jitter delays by a claimed twenty-two percentage points. This work leaves

behind a timed model for picking the quickest feedback paths in cloud-flavoured enterprise IoT setups, hoping to give digital overseers a

snappier and more elastic toolkit than they had yesterday.

Keywords: Multi-Hop Transmission, Oracle APEX, IoT Feedback Loops, Signal Propagation Simulation.

1. Introduction

1.1. Evolution of Multi-Hop Transmission in IoT Networks
Multi-hop transmission has gained traction in the Internet of Things mainly because engineers keep bumping into the hard ceiling that

single-hop topologies impose on range and battery life. Instead of demanding that every tiny sensor ping a distant base station directly,

the multi-hop picture lets those devices pass messages from one neighbour to another-something akin to handing off a note in a crowded

classroom. That informal relay trick unexpectedly cropped up in a wide range of real-world corners: wireless weather buoys, smart-grid

data streams, vineyard moisture probes, and street-level air-quality stations [1].

The idea can be traced back at least to the ad hoc mobile-network trials of the early 2000s, where no one could count on yesterday's cell-

tower map being valid tomorrow. Designers then stitched together decentralised routing blueprints to cope with buses that disappeared,

trains that sidled in late, and cars that weren't even on the map when the meeting started [22]. Eventually, the same toolkit got recycled

for battery-health-challenged edge gadgets. In that crossover, AODV, RPL, and LEACH found new life alongside duty-cycling hacks and

variable-transmit-power nudges, all in a rush to keep delays short without draining the last spark of lithium-ion [3].

Recent advances in cloud analytics paired with edge-computing hardware have revived interest in hybrid networking models. In these

setups, multi-hop packet paths gain a second wind from centralised telemetry feeds and on-the-fly feedback loops. Real-time route

tweaks, automatic packet retransmissions, and built-in fault tolerance spring from the same design [18]. Light-weight brokers-say MQTT

or CoAP-dream and publish their own party line, so decentralised sensors can chit-chat with a distant dashboard without becoming

winded.

Adaptive feedback loops are emerging as the nervous system of IoT networks [2]. By shifting hop eligibilities or signalling which relay

should speak first, the loops take the pulse of congestion, packet shedding, and application nodes. Such agility matters on a factory floor,

across ageing bridges, or in the ever-busier arteries of a smart city [5]. Comparable to how adaptive machine learning systems

dynamically respond to anomalies in enterprise IT infrastructure, incorporating similar intelligence into IoT feedback loops enables

signal routing systems to self-tune in real time, minimising disruptions and improving stability across complex topologies [19].

1.2. Role of Oracle APEX in Signal Monitoring and Real-Time Visualisation
Oracle APEX has gradually emerged in enterprise settings as a surprisingly flexible toolkit for building cloud-linked dashboards and

apps. Initially pitched as a low-code means of securing and serving tabular data over the web, the platform now handles live charting,

event-fed panels, and tight-knit plugs to telemetry back ends. Hooks for REST services, embedded PL/SQL, and modifiable JavaScript

UIs let the framework act as a connective tissue between sprawling IoT sensor flakes and the polished visual consoles managers expect

[7].

International Journal of Engineering, Science and Information Technology
Volume 5 No. 1 (2025) pp. 554-560

ISSN 2775-2674 (online)

Website: http://ijesty.org/index.php/ijesty

DOI: https://doi.org/10.52088/ijesty.v5i1.1361

Research Paper, Short Communication, Review, Technical Paper

http://creativecommons.org/licenses/by/3.0/
mailto:sreek.278@gmail.com
http://ijesty.org/index.php/ijesty

International Journal of Engineering, Science and Information Technology, 5 (1), 2025, pp. 554-560 555

In a signal-monitoring use case, APEX can pull data streams from roadside beacons or plant sensors through simple REST endpoints or

straight database pipes, meaning event states show up almost the moment the bits cross the wire. The tooling plays nicely with MQTT

brokers and cloud object stores, so it doubles as both a watch floor and a dial box, piping configuration tweaks back to edge devices

when alerts or oddities pop [20].

Advanced Oracle APEX applications go well beyond vanilla data charts. Engineers can code in-telescope validation rules, specify

custom packet-loss barricades, and wire up alerting chains that trip when multi-hop feedback loops misbehave. Such rigour matters when

IoT devices perch on mountaintops or slide beneath factory floors where no technician is standing by [12]. Because the platform natively

marries with Oracle Autonomous Database-and because that database already quirks machine learning into its daily chores-long-haul

studies of signal slump, latency creep, and route trustworthiness become almost effortless. Analysts can watch trends instead of chasing

alarms [9].

The cloud-native shape of APEX also means fleets of virtual instances can swell or shrink with the evening traffic. Researchers can

hammer-test synthetic IoT radio pathways through back-loaded, jittery, node-failing scenarios without provisioning a private datacenter.

That elasticity repositions the tool: it stops being merely a dashboard and starts acting as a design co-pilot, nudging architects on where

to place repeaters, how tightly to pack antennas, and when adaptive feedback shutters should snap shut. Incorporating machine learning

into such IoT-integrated platforms not only enhances security posture but also enables proactive detection of signal anomalies and

intelligent routing in multi-hop topologies, aligning with broader efforts to secure and stabilise real-time IoT ecosystems [4] [21].

1.3. Objectives and Research Problem
Multi-hop transmission has found its way into a surprising number of IoT pilots, yet few of those pilots have ever touched a mainstream

enterprise dashboard like Oracle APEX [10]. Most of the literature that does exist keeps its eyes fixed on narrow, network-only scores:

packet-drill ratios, latencies, the usual energy plots on a testbed graph. What researchers rarely show us, plus what manufacturers

definitely don't ship, are the live signal sweeps, the drag-and-drop visuals, and the clear, bite-sized control buttons that let a plant

manager do something useful.

This project sets out to stuff all that missing gear into one simulation. Picture signal drift, hop-by-hop packet counts, and twitchy

feedback loops all rattling around inside an APEX console while the network itself jiggles under synthetic storms. Close attention lands

on how tweaks in retransmission ceilings, the awkward spacing of mobile nodes, and random bursts of urban noise shape the story the

dashboard finally tells the operator.

A new simulation framework now makes it possible to study, in fine detail, the two-way traffic between sensor-layer IoT endpoints and

the application-layer Oracle APEX back end. Project engineers can follow packet delays in real time, watch for signs of signal fatigue,

and measure how much overhead the feedback loops end up adding to test close to what one would meet in a field rollout. Practical

nuisances are baked into the model, from the time it takes to map incoming data into visible graphs to the extra load on servers when a

routing path suddenly flips. Comparable simulation-driven methods, such as those demonstrated in CFD studies of fluid and temperature

distributions under environmental variability, offer a relevant precedent in integrating physical-layer dynamics with application-level

responsiveness [11].

The working assumption is straightforward but bold: if operators wire dynamic feedback loops straight into Oracle APEX dashboards

and rig those displays to update on the fly, haul rates for streaming telemetry and the accuracy of outlier spotting will both improve,

especially where jitter spikes or node crowding loom. APEX stops being just a patient reporter and instead feeds back commands, flashes

system health flags, and lets users pick which feedback lane should get priority. That extra layer gives IT departments a beefed-up

window onto their networks, letting them spot weird transmission behaviour, lock unstable nodes, and keep observability on enterprise-

grade autopilot.

The present study sketches out a multi-tiered simulation environment that marries the physics of network transmission with the heuristics

of application-layer decision making. Beneath that framework, the research interrogates the design trade-offs and threshold limits that

allow Oracle APEX to support signal-sensitive IoT deployments without sacrificing reliability. That inquiry hinges on a single question:

do the delays introduced by additional monitoring justify the uptick in responsiveness and delivery accuracy, especially when human

operators are already racing the clock to interpret and act on incoming signals? Findings from the experiment, still tentative but

suggestive, add texture to the emerging portrait of how low-code platforms hooked directly to network telemetry can behave as agile,

decentralised agents in multi-hop communication grids.

2. Literature Review

2.1. Multi-Hop Architecture with Oracle APEX Integration
The framework outlined in this section unveils a step-wise signal relay that stretches from battery-powered sensors all the way to a cloud

dashboard running on Oracle APEX. By stacking intermediate hops on top of one another, system designers gain room to scale without

having to redesign the entire pipeline. Such an arrangement mirrors the sprawling wireless grids found in smart farming, bridge

inspection, or multi-plant factory settings-wireless links that, for obvious reasons, seldom enjoy surplus power or wide-open bandwidth.

Each sensor behaves like a tiny two-way radio station, not only firing off measurements but also grabbing control orders as they fly past.

Because pipes in the field can vanish and reappear at the most inconvenient moments, MQTT steps in with its flicker-proof publish-

subscribe model [17]. The trail that packets follow resembles a living graph: edges light up or dim based on how jittery each leg feels,

how many handshakes have already failed, and which hop proved trustworthy the last time.

Data from individual nodes first lands at an aggregation endpoint, where Oracle APEX collects the telemetry through RESTful channels

that Oracle REST Data Services (ORDS) has already set up. After the raw signals reach the platform, they are parsed and validated, then

pushed out onto live dashboards crafted with APEX's mostly declarative controls. Users can, at a glance, monitor metrics such as how

long packets take to cross the network, the number of hops each message encounters, the ratio of packets that arrive intact, and the

fluctuations in signal strength over time. All of these visual readouts refresh automatically, driven by JavaScript actions baked into

APEX's low-code interface.

An important upside of this setup is that the same APEX instance both displays routing data and actively influences the flow of packets.

The moment the dashboard identifies trouble-either through repeated packet losses or sudden spikes in the system can fire off commands

that tweak transmission settings on selected edge devices. A lightweight Python broker adapter formats those control directives and

shoots them into the MQTT pipeline, neatly decoupling the enterprise logic from the core IoT messaging layer yet still allowing real-time

feedback to ripple back through the network.

556 International Journal of Engineering, Science and Information Technology, 5 (1), 2025, pp. 554-560

Fig 1. System Architecture – Oracle APEX and IoT Multi-Hop Signal Loop

Figure 1 presents the entire system architecture, tracing the multi-hop line that extends from the sensor edge to the final display. Shown

alongside Oracle APEX is the MQTT broker and the separated IoT signal plane, each one paired with a clear integration point. Signal

direction arrows invade every corner, guiding the eye toward feedback loops and control cycles. In the same frame, small boxes flag the

feedback trigger engine, session monitor, and RESTful bridge, turning general composition into specific engineering landmarks. Most

readers will recognise the clutter as the blueprint usually left in project slide decks.

A separate simulation trial deployed a cast of node topologies whose hop counts ran from three to twelve. Varying delay and jitter

profiles pushed the setup toward the sort of radio interference one might find in crowded urban airspace. Signal delay figures, organised

by hop range, appear in Table 1 alongside jitter variance, retransmission rate, and probability of packet drop. That columnar view

establishes the timing grammar needed to make later result discussions intelligible. Numbers without context never describe their

weather.

Table 1. Node-Hop Mapping and Signal Delay Parameters

Hop Count Average Signal Delay (ms) Jitter Variance (ms²) Packet Drop Probability (%) Retransmission Trigger Threshold (%)

1 15 2.1 0.5 95

2 28 4.5 1.2 92

3 43 6.3 2.8 90

4 58 9.1 4.6 87

5 74 12.7 6.9 85

6 91 15.3 9.5 82

7 110 18.9 12.4 80

Recent upgrades to Oracle APEX have noticeably boosted its event-driven data processing abilities, turning the framework into a

versatile hybrid application controller [13]. The system can now dispatch feedback messages in real time to Internet-of-Things nodes,

relying on PL/SQL routines and RESTful endpoints, thereby establishing closed-loop control over sensor networks that may be

geographically scattered.

2.2. IoT Feedback Loop Controller Design and Event Triggers
A feedback-loop controller embedded in the Oracle APEX framework continuously scans outbound transmissions for signs of trouble,

then pushes corrective orders upstream. Unlike traditional rule engines that simply match patterns, this component is a nimble logic

engine that ingests real-time metrics, weighs them against predefined performance benchmarks, and fires off actionable triggers.

Loss of signal, surges in latency, and a node falling silent for longer than a preset allowance can each flip the controller's internal switch.

Each detected event is linked to a predetermined response, whether that is issuing an immediate retransmission request, suggesting an

alternate routing path, or silently nudging the threshold upward. All instructions travel as compact MQTT messages that pack the sender

ID, recipient ID, command type, and Time-to-Live into a lean payload; this tight packing minimises the messaging footprint so control

updates do not swamp bandwidth-limited links [23].

To keep from flooding the system with commands over fleeting glitches, the controller employs a hysteresis buffer that ignores brief,

single-cycle dips. A soft alert is logged when delivery drops below the target for just one cycle, yet a hard retransmit order waits until the

shortfall drags on through three full cycles. This delay cushions the network against transient noise, sparing it from a self-inflicted

congestion loop [15].

Inside the APEX architecture, the PL/SQL engine quietly tracks its own pulse by seeding signal metrics into both transient session

buffers and more permanent database tables. Time-stamped records there show exactly when each node fires off a signal, when an ack

lands, how often a packet has to be resent, and how long everything takes. Simple SQL then combs those snapshots for obvious trouble-

flares-retransmission spikes, repeat blackouts at particular hops, or delays that suddenly start marching in lock-step across parallel routes.

The feedback loop really sets itself apart by being customizable on the fly from the APEX admin console. An operator can slide threshold

knobs, redraw which nodes belong to which groups, or even flip the loop off with a click, all without digging back into the code or

flashing firmware. This sort of on-the-spot flexibility matters when racks have to run for months without human hands in the guts [16].

Audit hooks run straight through the controller, too. Anytime a feedback rule fires, a tidy log entry stacks up with the trigger that lit it, the

specific rule that kicked in, the command sent out, and the ID of the node that caught it. Those entries turn into gold once the system is

live, giving engineers a rich post-mortem and feeding the machine-learning models that might evolve the reactive loops into something

that starts making predictions instead of just reacting [6] [14].

Oracle APEX, in the local deployment under examination, serves more than a dashboard for signal statistics; it functions as a real-time

conductor of network control. Decisions produced within the platform ripple outward, visibly altering transmission pathways before

minutes have elapsed. By pairing live data display with immediate intervention, the architecture recalibrates the role of enterprise

software, nudging it from passive surveillance toward the heart of distributed feedback loops.

International Journal of Engineering, Science and Information Technology, 5 (1), 2025, pp. 554-560 557

3. Methods

3.1. Node Topology Modelling and Signal Emission Scenarios
The testing environment relies on a discrete-event simulation engine that accurately tracks multi-hop IoT traffic while interfacing

seamlessly with the Oracle APEX mock-up. Topology design is straightforward: a single source node, an adjustable string of relay points,

and one endpoint, linearly arranged but also capable of ad-hoc branch diversions. Each hop is burdened with realistic limits-buffer size,

queue delay, residual energy-to mirror the everyday constraints seen in field-deployed wireless sensor nets.

Each node in the study was laid out on a flexible logical two-dimensional grid where the distance between points could be stretched or

compressed at will. Moving a node closer together boosted the wireless signal; pulling it apart lengthened the travel time and intensified

any drift the channel exhibited. A designated source created timestamped packets, stamped them with unique IDs, and pushed them

onward hop by hop until they landed at the final receiver. The software logged how many legs the message crossed, how long each leg

took, whether the bits survived intact, and any retries that cropped up along the way.

Test scenarios were sorted by hop counts that fell between one leg and seven legs. With each ladder rung fixed, engineers ran signal drills

under three spacing windows: cramped 10-meter clusters, middling 25-meter arrangements, and wide-open 50-meter spreads. That let

them watch how widening the gaps reshuffled delay, piled on jitter, and rattled loop control. The engine also swept the message drift

speed, the breakpoint where loss kicked in, and the channel goof-up rate according to curves lifted from field-curb radio propagation

maps.

Delay injection, jitter window, and spacing buckets for the urban IoT simulation are itemised in Table 2. These figures were lifted from

comparable mesh field trials and gently tweaked so that each run felt real within the brief pulse the experiment allowed.

Table 2. Parameter Ranges for Delay, Jitter, and Node Spacing

Configuration Type Signal Delay Range (ms) Jitter Amplitude (ms) Node Spacing (meters)

Dense 10 – 30 0 – 2 10

Moderate 25 – 55 2 – 5 25

Sparse 50 – 100 5 – 10 50

This adjusted grid of values formed the baseline for measuring how performance wobbles with hop layers and feedback techniques. Each

simulation loop stretched across a synthetic 60-second horizon, with fine-grained ticks logging latency build-up and retry gaps to the

microsecond.

3.2. Feedback Loop Dynamics and Noise Injection Configurations
A feedback-loop mechanism now occupies a dedicated module in the simulation framework, mirroring the logic in the Oracle APEX

controller discussed in Section 2.2. This virtual controller watches how packets behave as they move downstream and, the moment any

preset limit is crossed, fires a message back upstream, telling the node to retry a transmission, tweak hop settings, or shift delay buffers.

Within the simulation, the feedback runs over its own parallel channel, tracking the orderly MQTT route through a stand-in broker that

stays out of phase with the main signal loop.

Each tick of the simulation checks simple yardsticks-delivery failures, latency spikes, jitter swings-to see whether trouble has appeared.

If at least one red flag pops, delivery sinks below 90 per cent for five intervals or hop-to-hop delay wiggles too much, explicit control

packet rolls back toward the last node that confirmed receipt. That packet essentially shouts, Resend these bits, ease your delays for a

moment, or try a different path altogether.

A second layer of realism was added by injecting controlled noise into the testbed. Each burst of interference mimicked the erratic jumps

typical of crowded radio bands-packet losses, header garbles, and timing drags showed up just as they would in the field. The disturbance

pattern was steered by a user-set Poisson clock, letting the simulation replica busy intersections, back-to-back collisions, and those

sudden signal fades that haunt urban IoT links.

Figure 2 sketches the step-by-step choreography, tracing the packet from its launch to the final thumbs-up on the feedback loop. Arrows

spill from the source node, hop by hop, to the APEX dashboard where engineers watch thresholds flicker and decide if the control dial

should be turned. Each box in the chart lines up with a plug-in module, so anyone reviewing the run can match the moving packets with

the blinking code.

Figure 2 presents a flowchart mapping the multi-hop signal feedback loop and its validation pathways. By layering channel noise,

varying topologies, and responsive feedback mechanisms, the experiment replicates the stressors that an Oracle APEX monitoring stack

might encounter in the field. This synthetic setting is therefore able to mimic the loose, messy conditions seen in mature IoT

deployments, and it supplies the empirical groundwork for the numerical results that follow [8].

558 International Journal of Engineering, Science and Information Technology, 5 (1), 2025, pp. 554-560

Fig 2. Simulation Flowchart of Multi-Hop Signal Feedback and Validation

4. Results and Discussion

4.1. Signal Degradation Across Node Hops Under Varying Load
Signal strength deteriorates quickly whenever a radio wave must leap from one routing node to the next, and laboratory tests prove that

this decline is neither linear nor predictable. Battling delays, constant interference, and the stubborn queues that stack in a single device's

memory, each hop steals a small piece of the incoming signal. Under light traffic, the picture is almost rosy: four consecutive hops hardly

nick the average power level, but the story shifts dramatically once bandwidth demand swells. Heavy streams and overlapping control

messages exhaust the budget, and by the fifth jump, the remaining signal can disappear altogether.

The worst-case scenario emerges when adaptive feedback-routinely sent by an Oracle APEX regulator-remains sporadic or vanishes

entirely. In that silence, buildup delays get dangerously long, packets weaken on every pass, and the chain of hops resembles a game of

telephone gone hopelessly wrong. Feedback arriving at a measured pace, however, works like frequent recalibration; the signal holds

together far longer, demonstrating that a looping correction does more than just postpone failure.

A three-dimensional projection displayed in Fig. 3 plots typical message intensity against hop distance and response frequency. On the

vertical axis, resonance strength is normalised to rule out measurement noise, and the resulting performance bands reveal a curious

resilience: once feedback cycles climb, signal amplitude is preserved even as packets lace through seven nodes or more. Beyond that

threshold, however, the contour levels off, hinting at an architectural ceiling; routers and radios in the testbed simply cease to forward

any additional gain until either firmware or physical hardware is upgraded. In other words, operators installing denser mesh kits should

plan on tweaking the network stack if they aim to pump up fidelity beyond that hop limit.

Fig 3. Signal Strength vs Hop Count and Feedback Frequency

International Journal of Engineering, Science and Information Technology, 5 (1), 2025, pp. 554-560 559

4.2. Packet Delivery Trends and Loop Latency
Another dimension of the simulation tracked packet delivery ratios, this time manoeuvring through various inter-node spacings and

retransmission cutoffs. The closer the nodes sat to one another, the better the packets arrived in sequence; the short hop distance trimmed

both latency and the window for signal decay. Under those tight conditions, retaining a cautious retransmission point above 90 per cent

still pushed delivery rates past 96 per cent. Once the nodes were pried apart into moderate and sparse arrangements, however, success

rates faltered, particularly when aggressive retransmission settings slowed the feedback loop.

A three-dimensional simulation chart, illustrated in Fig. 4, plots packet-delivery rate against both node spacing and retransmission-fire

thresholds. The surface appears relatively flat until the threshold reaches approximately 85 per cent, a point at which moderate spacing

configurations deliver the highest rates without drowning the network. Move past that figure, and the landscape abruptly sags: the system

turns jittery, resentful messages multiply, and latency spikes become hard to ignore. Sparse layouts-drifts of fifty meters or greater-dip

sharply unless the feedback trigger is dialled down to eighty per cent or below.

Fig 4. Packet Delivery Rate vs Node Spacing and Retransmission Threshold

Separately, loop latency-summed as the interval from first detection of signal failure to the moment corrective feedback kicks in-was

recorded across the same topologies. In tightly packed designs, the number hovers around eighteen milliseconds, yet the reading in loose

configurations sometimes vaults past fifty. That bulge corresponds almost directly to the MQTT broker's own routing stalls and the lag

incurred by Oracle APEX while the controller processes commands. The data thus illustrate a familiar control dilemma: setting the

retransmission alarm too finely prompts the loop to wobble, slackening it invites ongoing packet gaps.

4.3. Adaptive Feedback Efficiency and Overhead
This section investigates the temporal expense of rolling out adaptive feedback across a multi-hop network. Simulation runs monitored

how often packets were retried as load patterns ebbed and flowed, charting the exact moments congestion hit. The aim was

straightforward: see if the controller could dial its alerts up and down, cut out the surplus chatter, and still keep throughput steady.

A quiet midday lane proved revealing, since the mechanic didn’t stir much; only a few jitter flashes provoked a brief wake-up. Later,

trickier traffic that flickered between a trickle and a flood revealed a sinusoidal activation graph-loud spurts of correction, then silence.

Peak crunch hours, naturally, pumped corrective signals skyward, firing off notices for every spiking delay or lost datagram. Tuned

versions settled fast, though, chopping the pulse rate once the chaos clipped back to routine.

A timeline simulation of feedback retransmission load is illustrated in Fig. 5. The horizontal axis marks elapsed simulation seconds,

while the vertical axis logs the discrete retransmission events initiated by the APEX controller. Sharp spikes in the curve signal intense

node congestion or abrupt signal drop-outs; the quieter valleys that follow indicate system stabilisation after route reconfiguration.

Overall, the data show a robust self-regulatory mechanism that keeps control chatter in check and spares precious bandwidth.

Fig 5. Feedback Retransmission Volume Over Time Across Dynamic Loads

560 International Journal of Engineering, Science and Information Technology, 5 (1), 2025, pp. 554-560

The efficiency of that feedback loop is captured as the fraction of actionable instructions versus the total packets sent. In every test

scenario, the ratio held steady above 0.78, meaning nearly four packets out of five produced a tangible correction in route behaviour.

Moreover, the APEX controller proved adept at absorbing signal variability, automatically scaling loop intensity according to past failure

rates-without requiring any manual tuning or code reload.

Together, the observations confirm that the framework keeps the signal clean, pushes out packets steadily, and spreads feedback traffic

without buckling when real-world noise intrudes. They also show how critical it is to nudge the retransmit windows and the loop-lag

tolerances, especially when the node counts crowd together. The following segment broadens the conversation, weighing what these

findings mean for Oracle APEX IoT deployments in the field and sketching next steps for monitoring stacks that need to scale.

5. Conclusion

Adaptive feedback mechanisms embedded in multi-hop Internet-of-Things linkages directly sharpen the precision and timeliness of

Oracle APEX monitoring dashboards. Test scenarios conducted at full bandwidth demonstrated that the retry routines activated by the

loop curtailed packet attrition and smoothed the signal across every mesh hop. By conserving that clarity, the visual renderings in APEX

remained coherent, and the otherwise routine latency spikes were effectively suppressed. Such continuity is non-negotiable in disciplines

as demanding as real-time bridge health surveys or the continuous oversight of rotating industrial machinery.

The feedback architecture also acts as an early-warning sentinel for transmission irregularities, sparking retransmission before a drop

becomes catastrophic. Because the graphic overlay correlates closely with on-the-wire behaviour, operators see only genuine departures

rather than the usual barrage of spurious alerts. The result is a high-fidelity anomaly timeline that neither swamps users with noise nor

allows critical events to slip past unnoticed. These field trials underscore the need to fuse signal-sensitive controls into the backbone of

any enterprise-grade monitoring platform destined for mission-critical deployments.

Feedback-driven IoT deployments invite careful calibration of Oracle APEX, particularly when the thresholds mirror each network's

topological quirks. Clusters of densely packed nodes respond best to higher retransmission limits that curb excessive control chatter,

whereas loosely scattered or interference-prone links usually need tighter settings to keep packets flowing. Simulations consistently place

the sweet spot between 80 per cent and 90 per cent thresholds, where reliability barely nudges controller workload.

System architects should shield visual dashboards from the latency of control commands by building REST endpoints that run

asynchronously with the main PL/SQL loop. Active interfaces gain extra punch from stitched-in volatility meters-memory jitter traces, or

flash points from spike retransmissions, for instance-which draw the operator's eye to moments that really matter. Taken together, these

refinements push Oracle APEX beyond passive charting, letting it function as a proactive nerve centre for real-time, fault-tolerant IoT

operations.

References

[1] Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: a survey. Computer networks, 47(4), 445-487.

[2] Kulkarni, P., & Jain, V. (2023). Smart Agroforestry: Leveraging IoT and AI for Climate-Resilient Agricultural

Systems. International Journal of SDG’s Prospects and Breakthroughs, 1(1), 15-17.

[3] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling

technologies, protocols, and applications. IEEE communications surveys & tutorials, 17(4), 2347-2376.

[4] Biswas, A. (2024). Modelling an Innovative Machine Learning Model for Student Stress Forecasting. Global Perspectives in

Management, 2(2), 22-30.

[5] Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer networks, 54(15), 2787-2805.

[6] Deshmukh, S., & Menon, A. (2025). Machine Learning in Malware Analysis and Prevention. In Essentials in Cyber Defence (pp.

74-89). Periodic Series in Multidisciplinary Studies.

[7] Cimolini, P. (2017). Oracle Application Express by Design. Apress LP.

[8] Karimov, Z., & Bobur, R. (2024). Development of a Food Safety Monitoring System Using IOT Sensors and Data

Analytics. Clinical Journal for Medicine, Health and Pharmacy, 2(1), 19-29.

[9] Bento, A. C., Gatti, D. C., & Galdino, M. (2022, September). Results about the use of Oracle application express for IoT projects.

In 2022 XII International Conference on Virtual Campus (JICV) (pp. 1-5). IEEE.

[10] Aravind, Ragul, Gokulraja, & Suganya. (2022). Wheelchair Assistance and Guidance Using IOT. International Academic Journal

of Innovative Research, 9(2), 22–24. https://doi.org/10.9756/IAJIR/V9I2/IAJIR0913

[11] Uvarajan, K. P. (2024). Integration of blockchain technology with wireless sensor networks for enhanced IoT security. Journal of

Wireless Sensor Networks and IoT, 1(1), 23-30. https://doi.org/10.31838/WSNIOT/01.01.04

[12] Emani, S., Vandrangi, S. K., Velidi, G., Ahmadi, M. H., Cárdenas Escorcia, Y., & Jafet Nieto Pisciotti, A. (2023). Effects of wavy

structure, ambient conditions and solar intensities on flow and temperature distributions in a mini solar flat plate collector using

computational fluid dynamics. Engineering Applications of Computational Fluid Mechanics, 17(1),

2236179.https://doi.org/10.1080/19942060.2023.2236179

[13] Ayesh, A. N. (2024). Enhancing Urban Living in Smart Cities Using the Internet of Things (IOT). International Academic Journal

of Science and Engineering, 11(1), 237–246. https://doi.org/10.9756/IAJSE/V11I1/IAJSE1127

[14] Syed, A. Oracle APEX Security: Best Practices for Robust Protection. IJSAT-International Journal on Science and

Technology, 16(2).https://doi.org/10.71097/IJSAT.v16.i2.3721

[15] Natheem, J., Rajkumar, S., Thaniyeal, P., Thavanish, P., & Suganya, S. (2023). Fake News Detection using Naive Bayes Algorithm

in Machine Learning. International Journal of Advances in Engineering and Emerging Technology, 14(1), 93–102.

[16] Gupta, V., Dharmaraja, S., & Gong, M. (2011). Analytical modeling of TCP flow in wireless LANs. Mathematical and Computer

modelling, 53(5-6), 684-693.

[17] Kalluri, K. (2024). Low-Code BPM meets IoT: A Framework for Real-Time Industrial Automation.

[18] Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad hoc networks, 3(3), 325-349.

[19] Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures. University of California, Irvine.

[20] Ismail, K., & Khalil, N. H. (2025). Strategies and solutions in advanced control system engineering. Innovative Reviews in

Engineering and Science, 2(2), 25-32. https://doi.org/10.31838/INES/02.02.04

https://doi.org/10.9756/IAJIR/V9I2/IAJIR0913

International Journal of Engineering, Science and Information Technology, 5 (1), 2025, pp. 554-560 561

[21] Sappa, A. (2023). Adaptive Machine Learning Algorithms for Anomaly Detection in Enterprise IT Infrastructure. Research Briefs

on Information and Communication Technology Evolution, 9, 206-227.

[22] E. Kepros, Y. Chu, B. Avireni, S. K. Ghosh, B. Wright and P. Chahal, "Additive Manufacturing of a mmWave Microstrip Leaky

Wave Antenna on Thin Alumina Substrate," 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver,

CO, USA, 2024, pp. 1742-1745, doi: 10.1109/ECTC51529.2024.00289.

[23] S. K. Ghosh, E. Kepros, Y. Chu, B. Avireni, B. Wright and P. Chahal, "Terahertz Metasurfaces on Flex Using Aerosol Jet Printing

and a Novel Parylene Lift-off Process," 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, CO,

USA, 2024, pp. 760-764, doi: 10.1109/ECTC51529.2024.00124.

[24] B. Avireni, Y. Chu, E. Kepros, M. Ettorre and P. Chahal, "RFID based Vehicular Positioning System for Safe Driving Under

Adverse Weather Conditions," 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA,

2023, pp. 2196-2200, doi: 10.1109/ECTC51909.2023.00380.

[25] Reginald, P. J. (2025). Wavelet-based denoising and classification of ECG signals using hybrid LSTM-CNN models. National

Journal of Signal and Image Processing, 1(1), 9–17.

