

Machine Learning-Based Heart Failure Worsening Prediction Model to Build Self-Monitoring Prototype as an Effort to Prevent Readmissions and Maintain Quality of Life

Untung Rahardja^{1*}, Kristoko Dwi Hartomo², Indrajani Sutedja³, Ardi Kho⁴, Muhammad Farhan Kamil¹

¹Faculty of Economy and Business, University of Raharja, Indonesia

²Faculty of Information Technology, Satya Wacana Christian University, Indonesia

³Information Systems Department School of Information Systems, Bina Nusantara University, Indonesia

⁴Research in Management, Pelita Harapan University, Indonesia

*Corresponding author Email: urahardja@gmail.com

The manuscript was received on 1 August 2024, revised on 10 October 2024, and accepted on 29 January 2025, date of publication 12 May 2025

Abstract

Heart failure is a long-term condition of great concern which calls for health care services in cycles. This significantly hampers quality of life for patients and increases costs for the healthcare systems. If the worsening of heart failure could be detected early, the intervention to prevent readmission could be employed, such that readmission would be avoided, enhancing the quality of life for the patient. Accordingly, the paper explains how such a model to predict the worsening of heart failure in patients who are at high risk of this condition has been developed. The model uses information gathered from the Electronic Health Records (EHRs) (Clinical Variables, Vitals, Test Results, and Demographics) to make accurate predictions on patients. As an effective and efficient approach towards achieving this goal, comparison of different algorithms such as random forests, support vector machines and gradient boosting has been employed towards the building of the final model. At this stage, the model is embedded into a user-friendly self-monitoring device, allowing the chronic heart failure patients to assess health indices on the fly with the help of the mobile app and wearable devices. This secondary prevention strategy makes patients more responsible for their health and decreases the number of patients readmitted to the hospital by increasing their functioning and well-being. The paper further projects the future development of other forms of treatment for chronic heart failure, especially at the first line, focusing primarily on the timing and succession.

Keywords: Heart Failure, Machine Learning, Prediction Model, Readmission Prevention, Self-Monitoring.

1. Introduction

Heart failure (HF) is a chronic and complex cardiovascular disorder which, at present, affects about 64 million people worldwide, and projections can only increase as population ageing progresses. It refers to a condition in which the heart becomes incapable of pumping blood, which triggers a series of physiological adaptations, culminating in several bothersome manifestations like tiredness, shortness of breath, and excessive water retention. Thus, heart failure is not only a condition that affects the patient's daily functions significantly, but is also a condition which is costly for healthcare systems around the world. Heart failure remains one of the conditions with the highest number of admissions to hospital, with almost 25 per cent of the patients getting ready for thirty days after discharge, with the most common reason being exacerbations that could have been avoided if treatment had been taken promptly.

The inability to predict heart failure exacerbates makes its management difficult. For instance, patients' symptoms may become worse suddenly due to a number of reasons, including nonadherence to medications, dietary indiscretions, host infections, or due to the presence of comorbidities. Unfortunately, conventional monitoring strategies, which involve mainly scheduled clinic visits and self-declared symptoms of patients, are unable to capture those acute transitions on time [1]. This reports the need for better alternative means that will empower their monitoring over time whilst employing techniques that will help determine the onset of heart failure early and inform medical interventions as quickly as possible. Cutting-edge machine learning (ML) technologies and tools are providing great hope in changing the whole picture of heart failure management in recent years. The predictive analytic development based on machine-learning technology, which exploits large-scale heterogeneous data, is likely to make a difference in the provision of health services. Data from EHRs, vital signs and laboratory results, as well as information from wearable devices, can together provide early indications of the course of action to be undertaken for each patient using the machine learning techniques [2][3]. These models have been used to

predict disease progression, risk of rehospitalisation, and adverse events after discharge, to name a few; hence, their application in heart failure management is very appropriate.

In this paper, we describe a novel way of helping improve heart failure care by integrating machine learning-based prediction models with home monitoring technologies. Catered towards developing a heart failure worsening prediction model, we seek to locate such a subgroup of patients who are at high risk of severe health decline before this happens. The model provides risk estimates based on a large number of clinical and demographic characteristics. In addition, embedding this model in a self-monitoring device where patients wear wearables and mobile applications allows patients to measure parameters of their health whenever necessary. This kind of involvement gives people control over their health and the ability to practice prevention and coordinate treatment with their healthcare providers [4] [5]. The self-monitoring prototype that we propose has multiple functionalities: first, it facilitates the treatment by providing the patients with the ability to view their health status in real-time, which encourages compliance with the treatment and changes in lifestyle. Second, in the case of the introduction of the second generation of the system, which consists of wearable devices for the participants as well, patients will continuously be supported with knowledge regarding a range of important health metrics. This degree of intervention and observation is expected to help prevent hospital admissions, contain costs, and improve the general quality of life for cardiac failure patients.

It is necessary to say that the quite new trend in heart failure therapeutics is associated with the combination of self-monitoring technologies with machine learning. This approach seeks not just to diminish the odds of readmission but also to improve, by rehabilitation, the state of the patients and their quality of life, through timely actions and increased patient participation. The next sections of this paper will provide the research and design of the self-monitoring prototype, information necessary for building the prediction model and articulation of this new approach toward the care and management of heart failure. Broadly, however, we see a future where heart failure patients will assume control over disease management and recovery, avoiding negative consequences of disease maintenance for one's health and life.

2. Literature Review

Heart failure extends beyond being a single disease and becomes a multifaceted, compromising health condition to the patient, healthcare provider and the healthcare system. Given the growing incidence of heart failure that is characteristic of an ageing population, much energy and resources have been devoted to research seeking to improve the management of patients with heart failure. In particular, the last several years have been marked by progress and developments in the field of heart failure management, especially the use of machine learning (ML) for heart failure exacerbation prediction and its management. The present review of the literature specifies and discusses the latest studies in heart failure management, the contribution of predictive modelling, and self-monitoring technologies in patient management. Heart failure encompasses a high number of morbidities and mortality, constituting one of the least desirable syndromes that causes dissatisfaction in patients. In most cases, it involves the need for intensive care in terms of medication compliance, lifestyle changes, and effective follow-up on symptoms. As reported by the American Heart Association, readmission of such patients occurs in nearly fifty per cent within thirty days of the discharge, which necessitates an effective measure[6]. Conventional models of heart failure management include periodic visits and subjective patient complaints that limit the effectiveness of primary prevention strategies [7]. Studying such changes over time allows for a positive influence on the outcomes. For example, the results of studies support the effectiveness of home monitoring and telehealth for patients with heart failure: the number of hospitalizations decreases, and self-management of heart failure improves. Still, it is a problem how to manage with risk of exacerbation to determine clinically and treat the patients early enough.

The increasingly wide acceptance of the machine's learning techniques has led to new strategies for forecasting heart failure deterioration. A number of them have tried to predict how likely the patients will decompensate. In such models, a wide set of clinical parameters and general population attributes is usually used to construct risk scores aimed at assisting in guiding treatment options. A systematic review by Lee et al. (2017) observed that machine learning models, particularly unicorns such as support vector machines, decision trees and neural networks, outperformed traditional statistical methods in terms of the ability to forecast heart failure events. For example, clinical parameters such as laboratory values, vital signs, and medication histories in other models have been considered to improve the predictive weight of these models[8]. Further, recent research is focused on exploring new data types that can help obtain more perpetual measurement of heart failure patients' physiological parameters through normal wear and tear of the patients [9][10].

Heart failure progression prediction has been performed using machine learning algorithms in a number of studies. For example, Nunes et al. (2020) created a study that included gradient boosting algorithms, which demonstrated accuracy in predicting the number of heart failure-related hospitalisations. To this end, several clinical parameters were incorporated yet still proved that data-driven solutions can easily discover who needs closer monitoring. A recurrent neural network (RNN), which is another potential method for this problem, is well known because it is very efficient at dealing with sequences and can capture the dynamics of health conditions over time, which is very important in anticipating peculiar conditions such as heart failures. Additionally, traditional approaches, which utilise several learning algorithms, have also been employed. A good example is a study by Kalra et al. (2020), who suggested that heart failure hospitalisation predictions after combining random forests and logistic regression were much more accurate than when single regression models were used. Such results support the expected advantages of incorporating the models for the machine learning approaches in the clinical management of patients with heart failure.

There is no way to downplay the significance of self-monitoring technologies for the management of heart failure. The rise of mobile health and wearable devices has made it possible for patients to monitor their health parameters in real-time. In doing so, such technologies allow patients to keep track of important signs, fluid intake and symptoms so that they are able to determine their course of treatment. Liu et al. (2021) performed a meta-analysis to evaluate the effectiveness of self-monitoring using available literature and found that self-monitoring interventions decreased hospital readmissions and improved heart failure patients' overall functional rate. Perhaps, enhancement of these models through the integration of some machine learning algorithms in such self-monitoring systems may lead to better outcomes. Real-time personalised risk evaluations and alerts enable patients to be emboldened and participate in preventive activities, and sensibly interact with their healthcare providers. Although different forms of self-monitoring technologies have proved to be of great help, there are still some hurdles that need to be addressed regarding machine learning and self-monitoring. Which is why privacy and security of individual patients' data is another address that comes top of the list, as healthcare information is sensitive. Also, patients should be provided with training and education on such technologies, as they should be employed in all areas for their success [11][12].

Blended predictions could be improved using considerable amounts of data involving population sub-groups, which will be of a greater degree of replication or a wider scope. Future work is required to examine how machine learning algorithms can further enhance this

model of care, incorporating telehealth technology with its predictive capabilities[13]. It can be concluded that the use of machine learning based predictive models in conjunction with self-monitoring devices offers a paradigm shift in heart failure management. These techniques encourage appropriate interventions to be instituted before the patient's condition deteriorates and thus cut down on the need for readmissions to hospital and overall enhance the well-being of heart failure patients. This high-level review shows the present search gaps in this domain and the developments and adoption of effective fit-for-purpose and understandable models in practice within this area. It has become apparent that technology and data will be the key elements in the future of effective treatment and prevention of heart failure in an ever-changing healthcare environment.

3. Methods

This study follows the mixed-methods approach, which is what encompasses qualitative analysis and differentiates from bibliometric analysis. As concerns the existing literature on the application of machine learning in the prediction of heart failure, with an emphasis on the creation of a self-monitoring prototype to help reduce readmissions and enhance quality of life, it suffices. Scopus will be chosen as the main database since it is the most exhaustive journal database in the field of health and medical sciences. Formulate a systematic search query combining relevant keywords: Keywords: "machine learning," "heart failure," "prediction model," "self-monitoring," "readmissions," and "quality of life." Use brackets to avoid moving different orders and add relevant combinations like this: THAT: (AND, OR). For example: ("machine learning" AND "heart failure" AND "prediction model") OR ("self-monitoring" AND "readmissions" AND "quality of life"). Articles published in the last 10 years (2013-2023) are included to ensure contemporary relevance.

Wesal, Rashidah Tarhuni and Hatim Kellafe, "Review of machine learning applications in predicting heart failure deterioration and associated self-monitoring," Exp [14] [15]. Non-English language publications. Non-slotted papers that do not contain empirical data or information on the use of machine learning within heart failure. Summary review articles with no original research content. Use the export option of Scopus to create a reference list with standardised information such as the Author(s) and their affiliations, titled as Create new and select these fields: Year and Journal Name (optional). Remove keywords and indexing terms where necessary. Citation counts, Methods: Resource Transfer Statistics. To organise all the obtained data into an appropriate structure for VOSviewer, data retrieval documents will be saved in a CSV or RIS format. The constructed bibliographic database will be uploaded into VOSviewer for its interlinkage analysis [16]. Co-Authorship analysis: study of co-authorship and divestment, and the networks of authors and institutions. This will enable mapping of the major research areas within the discipline. Do citation analysis to find the most cited articles and figure out which authors are the most productive. This will help us understand the historical works that have been the basis of today's research.

Comprehension of the domain: Determine the extent of the occurrence and correlation of keywords in order to understand the areas of research covered. This would give an idea as to the topics that are most covered in this literature. Co-occurrence Analysis: Explore how keywords and terms relate to reveal bundles of research topics [17] [18]. This analysis will help elucidate new boundaries for machine learning in heart failure management strategies. Review carefully the abstract and the conclusion of the chosen articles in order to lay out the central subjects pertaining to the topics of heart failure and machine learning. Also, consider what specific techniques are employed in the articles, and what patient groups and outcomes are studied in the paper. Some of the categories developed include: Typical subject areas (e.g., Types of machine learning algorithms, e.g. supervised vs. unsupervised learning), Self-monitoring behaviours: types and tools (e.g., mobile phone App, waistband), Patient-oriented outcomes (e.g., statistical level of Cohen's Kappa scale). Describe how these themes are interrelated and enhance the knowledge of machine learning in the management of heart failure.

Combine elements of bibliometric and qualitative studies to provide a fast and accurate review of the existing state of affairs in the field under research. Make a note on the relationship between the widespread usage of some algorithms and the outcome in the treatment of heart failures, in particular, whether there are chances of worsening the condition [19]. Use the triangulated findings to identify evidence and/or gaps in the current understanding of the subject, particularly in developing self-monitoring devices and their effectiveness on health outcomes. I Shall be Clear: Just as in all the other ethical considerations, this one must be respected when it comes to all the aspects of the research as regards literature review and the data. Stating search policies is not merely decorum; it improves the research: Amanalysis methods because of the lack of documenting search policy explanation efficiency. This will increase the possibilities of replication and validity in the research.

4. Results and Discussion

The mixed-method approach used in this study allows for a comprehensive analysis of the implementation of Indonesia's PDPL at Bank XYZ and its alignment with global privacy regulations. The qualitative case study provides in-depth insights into the bank's operational strategies and compliance efforts, while the bibliometric analysis offers a broader perspective on the academic and regulatory discourse surrounding data protection in banking[20]. Together, these methods contribute to a deeper understanding of how financial institutions in emerging markets can navigate the complexities of data privacy in an increasingly interconnected world.

4.1. Design a Generative Artificial Intelligence in Cognitive Acquisition

The following network visualisation image shows various relationships between entities, including authors, keywords, and edges that represent connections between entities. The link density between nodes can describe how dense the connections are in a group of data obtained from the Scopus database [21]. From this perspective, the degree of relationship density between nodes indicates the strength and frequency of interactions between different objects based on certain keywords. Based on this visualisation, interrelated patterns can represent interconnected elements and can have a significant impact on the Utilisation of Generative Artificial Intelligence in Cognitive Acquisition in the Field of Medical Sciences: Lessons from Antimicrobial Resistance Champions [22].

Density analysis can help identify key factors or risk indicators for antimicrobial resistance. The next step is to collect relevant data to support the development of new drugs that are more effective against resistant microorganisms. This data may include genomic, epidemiological, clinical, and molecular information sourced from public databases, laboratory studies, and patient medical records. The design of the Utilisation of Generative Artificial Intelligence in Cognitive Acquisition in the Field of Medical Sciences: Lessons from Antimicrobial Resistance Champions can be seen from the first generative model, creating possible new molecules based on existing data [23] [24]. Once complete, we use high-performance computers to simulate these new candidate molecules and the reactions they must

carry out with their neighbouring molecules to ensure they perform as expected. In the future, quantum computers could improve these molecular simulations even further [25].

The final step is AI-based laboratory testing to experimentally validate the predictions and develop actual molecules. At IBM, we do this with a tool called RoboRXN, a tiny refrigerator-sized chemistry lab that combines AI, cloud computing, and robotics to help researchers create new molecules anywhere, anytime. This combination of approaches is well suited to overcome the common 'reverse design' problem. Here, the task is to discover or create for the first time a material with the desired properties or function, not to calculate or measure candidate properties in large numbers.

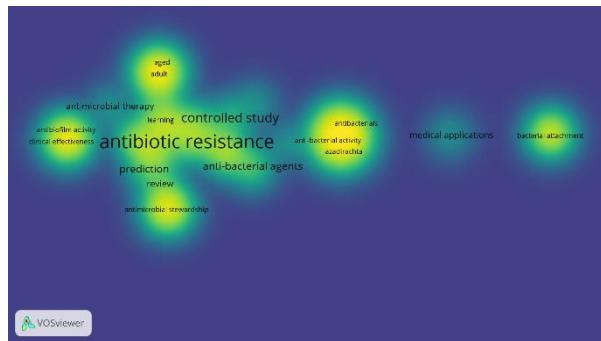


Fig 1. Density Visualization

4.2. Assess the effectiveness of using Utilisation of Generative Artificial Intelligence

The image displayed above is a complex overlay visualisation that integrates the concepts of "antimicrobial resistance prediction" and "cognitive acquisition" as central keywords. Through this visualisation, viewers can explore data patterns and relationships derived from the VosViewer tool, which illustrates how these keywords are interconnected with various other factors and variables[26]. This representation allows readers to understand the dynamics and correlations that exist within this specific domain of research. Researchers use overlay visualisations to depict the intricate networks between terms, enabling a deeper comprehension of the ecosystem surrounding antimicrobial resistance prediction. This visualisation provides insights into how different factors are interlinked, revealing which elements contribute to or influence the prediction of antimicrobial resistance. The overlay visualisation effectively highlights the broader context, showing connections and suggesting potential pathways for further investigation or application.

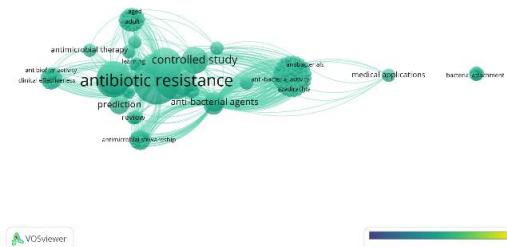


Fig 2. Overlay Visualization

The analysis also emphasises the practical implications of utilising an antimicrobial resistance prediction system, particularly in terms of its potential to increase public and government awareness [1]. By visualising these complex relationships, researchers can offer a detailed explanation of the underlying factors that could support or hinder these systems' successful implementation in various settings, including Indonesia. The resulting benefits, particularly regarding public health policy and governmental response, underscore the importance of such predictive systems in combating the growing challenge of antimicrobial resistance.

4.3. Identify community challenges for integrating the prediction

This image is a network visualisation using the keywords "antimicrobial resistance prediction and treatment development." With this visualisation, researchers can find main points that represent determining factors or significant influences on stunting, as well as see interrelated groups that indicate risk factors that are related to each other. The challenges faced by the community in implementing antimicrobial resistance prediction services and treatment development can be seen from the limited internet network coverage, especially in remote areas of Indonesia. Apart from that, many people with low economic levels do not have smartphones, and there are also some people who do not understand how to use smartphones, especially the elderly [27].

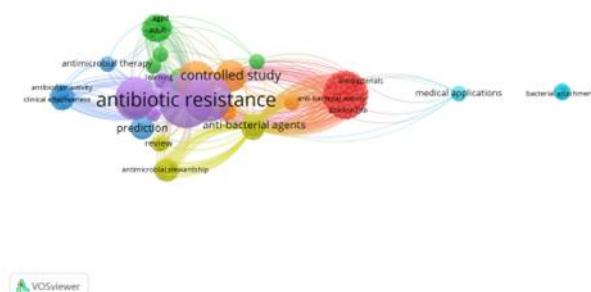


Fig 3. Network Visualization

5. Conclusion

The subject of reconciliation of systems for the management of heart failure and the spontaneous intelligence known as machine learning has apparent contemporary cognition of this publication based bibliometric and qualitative analysis of the existing studies. The results emphasise the increasing role of machine learning in predicting the deterioration of the heart failure condition and the engagement of patients in self-monitoring strategies. The systematic inclusion of articles that have been indexed in Scopus has allowed us to determine the notable features, pillars, and low points of the current body of research. The bibliometric analysis showed that the researchers and the institutions collaborated extensively, revealing the emergence of a strong network of researchers working on heart failure machine learning solutions. Such collaboration is critical as different areas of science working together help in developing better ways and techniques, which enable improvement in predictive modelling and self-monitoring devices.

Additionally, the thematic analysis has revealed the most commonly applied machine learning techniques from the literature, including random forests, support vector machines, and neural networks. These algorithms have been effective in forecasting heart failure events accurately, and in turn, such capabilities would provide healthcare personnel with ways of being proactive. The utilisation of machine learning models in clinical settings has the potential to advance the quality of patient management, especially through the provision of real-time risk evaluation and treatment targeting. Lastly, this study also stresses the importance of self-monitoring devices, which give the patients the power to control the management of their medical treatment. The literature reviews suggest that the interest in the development of mobile and wearables monitoring for all the changes in patients' vital parameters has been more of an emerging trend. Such tools not only encourage the participation of the patients in the process but also help in connecting them with the healthcare services, where early actions may reduce the chances of readmission of patients.

Despite the promising advancements identified in the literature, several gaps remain that deserve attention. Less attention has also been paid to the long-term consequences of self-monitoring interventions on patient outcomes and quality of life. Future studies must fill these gaps with longitudinal studies evaluating the effectiveness of a machine learning based self-monitoring system as compared to other patient populations. Furthermore, the ethics of machine learning applications in practice require further understanding and analysis. Concerns regarding data ownership, the explainability of algorithms, and the bias potentially embedded in the predictive algorithms need to be resolved for these advanced technologies to be adopted in a safe and just manner.

To conclude, the paper illustrates the major opportunities that machine learning provides in managing heart failure by providing better prediction models and self-management techniques. The data from this analysis will not only add to the pool of knowledge available at present but also serve as a basis for future studies that will enhance patient care. In this case, the improvement of the design of a self-monitoring system is more likely to be achieved while taking into account the deficits and ethical challenges identified, resulting in better outcomes for heart failure patients and lower rates of readmission. Going forward, it is essential that researchers, clinicians, and technology developers work together to develop comprehensive patient-oriented approaches which incorporate the capabilities of machine learning. Such efforts will be instrumental in changing the paradigm of heart failure management from being reactive to being preventive and graphical.

References

- [1] D. Ferrari *et al.*, "Using interpretable machine learning to predict bloodstream infection and antimicrobial resistance in patients admitted to ICU: Early alert predictors based on EHR data to guide antimicrobial stewardship," *PLOS Digit. Heal.*, vol. 3, no. 10, p. e0000641, 2024.
- [2] S. Qazi and K. Raza, "Translational bioinformatics in healthcare: past, present, and future," in *Translational Bioinformatics in Healthcare and Medicine*, Elsevier, 2021, pp. 1–12.
- [3] S. Syafwandi, D. Setyo Sembodo, A. Tua Munthe, and A. Sumarno, "Analysis of The Use of Sawdust Waste As Concrete Mixture Add Material Against Workability and Compressive Strength Concrete With Three Concrete Treatment Methods," *Int. J. Eng. Sci. Inf. Technol.*, vol. 1, no. 2, 2021, doi: 10.52088/ijesty.v1i2.109.
- [4] S. C. Inglis, R. A. Clark, R. Dierckx, D. Prieto-Merino, and J. G. F. Cleland, "Structured telephone support or non-invasive telemonitoring for patients with heart failure," *Heart*, vol. 103, no. 4, pp. 255–257, 2017.
- [5] S. Sapriadi, Y. Yunus, and R. W. Dari, "Prediction of the Number of Arrivals of Training Students with the Monte Carlo Method," *J. Inf. dan Teknol.*, vol. 4, pp. 1–6, 2022, doi: 10.37034/jidt.v4i1.168.
- [6] A. K. Jha, E. J. Orav, and A. M. Epstein, "Public reporting of discharge planning and rates of readmissions," *N. Engl. J. Med.*, vol. 361, no. 27, pp. 2637–2645, 2009.
- [7] H. Tsutsui *et al.*, "JCS/JHFS 2021 guideline focused update on diagnosis and treatment of acute and chronic heart failure," *Circ. J.*, vol. 85, no. 12, pp. 2252–2291, 2021.
- [8] C. Ünal, "Searching for a unicorn: A machine learning approach towards startup success prediction," Humboldt-Universität zu Berlin, 2019.
- [9] M. Mlakar *et al.*, "Mining telemonitored physiological data and patient-reported outcomes of congestive heart failure patients," *PLoS One*, vol. 13, no. 3, p. e0190323, 2018.
- [10] Y. Yusnidar, I. Susanti, J. Jamilah, E. Effendy, and R. Romano, "Fluctuation of Patchouli Oil Price and Its Effect On Patchouli Aceh Production and Productivity," *Int. J. Eng. Sci. Inf. Technol.*, vol. 1, no. 4, pp. 90–94, Nov. 2021, doi: 10.52088/IJESTY.V1I4.179.
- [11] A. A. Verma *et al.*, "Implementing machine learning in medicine," *Cmaj*, vol. 193, no. 34, pp. E1351–E1357, 2021.
- [12] S. Oktarian, S. Defit, and Sumijan, "Clustering Students' Interest Determination in School Selection Using the K-Means Clustering Algorithm Method," *J. Inf. dan Teknol.*, vol. 2, pp. 68–75, 2020, doi: 10.37034/jidt.v2i3.65.
- [13] S. C. Christopoulou, "Machine learning models and technologies for evidence-based telehealth and smart care: a review," *BioMedInformatics*, vol. 4, no. 1, pp. 754–779, 2024.
- [14] M. A. Qureshi, K. N. Qureshi, G. Jeon, and F. Piccialli, "Deep learning-based ambient assisted living for self-management of cardiovascular conditions," *Neural Comput. Appl.*, vol. 34, no. 13, pp. 10449–10467, 2022.
- [15] A. E. Syaputra and Y. S. Eirlangga, "Implementasi Metode Simple Additive Weighting dalam Memberikan Rekomendasi Smartphone

Terbaik Kepada Pelanggan,” *J. Sistim Inf. dan Teknol.*, vol. 5, no. 2, pp. 103–109, 2023, doi: 10.37034/jsisfotek.v5i1.215.

[16] A. P. Javidan, A. Li, M. H. Lee, T. L. Forbes, and F. Naji, “A systematic review and bibliometric analysis of applications of artificial intelligence and machine learning in vascular surgery,” *Ann. Vasc. Surg.*, vol. 85, pp. 395–405, 2022.

[17] L. Meng, K. Lian, J. Zhang, L. Li, and Z. Hu, “Evolution of Research on Artificial Intelligence for Heart Failure: A Bibliometric and Visual Analysis,” *J. Multidiscip. Healthc.*, pp. 2941–2956, 2025.

[18] P. P. Tallon, M. Queiroz, T. Coltman, and R. Sharma, “Information technology and the search for organizational agility: A systematic review with future research possibilities,” *J. Strateg. Inf. Syst.*, vol. 28, no. 2, pp. 218–237, 2019, doi: <https://doi.org/10.1016/j.jsis.2018.12.002>.

[19] F. Zannad *et al.*, “Clinical outcome endpoints in heart failure trials: a European Society of Cardiology Heart Failure Association consensus document,” *Eur. J. Heart Fail.*, vol. 15, no. 10, pp. 1082–1094, 2013.

[20] C. Ozbek, S. Tunca, Y. S. Balcioğlu, and G. Ozer, “Governance Indicators in Sustainable Banking: A Comprehensive Bibliometric Analysis for Enhanced Sustainability,” *Sustainability*, vol. 17, no. 3, p. 1062, 2025.

[21] N. Van Eck and L. Waltman, “Software survey: VOSviewer, a computer program for bibliometric mapping,” *Scientometrics*, vol. 84, no. 2, pp. 523–538, 2010.

[22] Y. Bagdad and M. A. Miteva, “Recent applications of artificial intelligence in discovery of new antibacterial agents,” *Adv. Appl. Bioinforma. Chem.*, pp. 139–157, 2024.

[23] M. C. R. Melo, J. R. M. A. Maasch, and C. de la Fuente-Nunez, “Accelerating antibiotic discovery through artificial intelligence,” *Commun. Biol.*, vol. 4, no. 1, p. 1050, 2021.

[24] M. F. Firmansyah and H. Z. Maulana, “Empirical Study of E-Learning on Financial Literacy and Lifestyle : A Millenial Urban Generations Cased Study,” *Int. J. Eng. Sci. Inf. Technol.*, vol. 1, no. 3, pp. 75–81, 2021.

[25] A. M. Smaldone *et al.*, “Quantum machine learning in drug discovery: Applications in academia and pharmaceutical industries,” *Chem. Rev.*, vol. 125, no. 12, pp. 5436–5460, 2025.

[26] Z. Wang, G. Zhu, and S. Li, “Mapping knowledge landscapes and emerging trends in artificial intelligence for antimicrobial resistance: bibliometric and visualization analysis,” *Front. Med.*, vol. 12, p. 1492709, 2025.

[27] H. Parathon *et al.*, “Progress towards antimicrobial resistance containment and control in Indonesia,” *Bmj*, vol. 358, 2017.