

Real-time Image Processing in Embedded Vision Systems for Autonomous Vehicles

Vedanarayanan Venugopal^{1*}, Monalisa Mohanty², Vinay Kumar Sadolalu Boregowda³, Suraj Singh⁴,
Manpreet Singh⁵, Pochampalli Deepthi⁶, Shashikant Deepak⁷

¹Department of Electronics and Communication Engineering, Sathyabama Institute of Science and Technology, Chennai, India

²Centre for Internet of Things, Siksha 'O' Anusandhan (Deemed-to-be University), Bhubaneswar, Odisha, India

³Department of Electronics and Communication Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Karnataka, India

⁴Maharishi School of Engineering & Technology, Maharishi University of Information Technology, Lucknow, India

⁵Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India

⁶Centre for Multidisciplinary Research, Anurag University, Hyderabad, Telangana, India

⁷uGDX, ATLAS SkillTech University, Mumbai, India

*Corresponding author Email: vedanarayanan.etc@sathyabama.ac.in

The manuscript was received on 21 November 2024, revised on 1 January 2025, and accepted on 1 April 2025, date of publication 22 May 2025

Abstract

The most recent studies show that the benefits of the IT improvements associated to ads were substantial. These days, there is a lot of controversy over the optimal way to store, retrieve, and access personal and other data. Since systems are developing so quickly and clients may now access information virtually from anywhere, delivering personal or official information on a physical device has become outdated. This is how distributed computing has emerged and expanded to meet the needs of efficiency, security, unwavering quality, and laziness. The widespread use of Internet of Things devices promises to alter some aspects of our lifestyle. The delivery of human services services is being transformed by other individual Internet of Things devices, such as wearable wellness, wellness monitoring devices, and system-powered restorative devices. This invention promises to benefit the elderly and others with disabilities, enabling higher degrees of independence and personal fulfilment at an affordable price. According to the legally enforceable claim, the Internet of Things connects everything to the Internet, conducts data exchange, and transmits information via data-detecting devices including sensors, RFID, and global positioning systems. The Web of Things must be designed to detect, guide, and filter objects in order to provide clients with a variety of innovative data management services. The effects on transportation planning of autonomous cars, often known as self-driving, driverless, or robotic vehicles. Based on past vehicle technology experience, it examines the likelihood of such vehicles developing and being used quickly, their potential costs and benefits, how they will impact travel behaviour, and how they will influence planning choices like the best parking, roads, and public transportation options.

Keywords: Autonomous, Driverless, Conservation, Vehicles, Image Processing.

1. Introduction

The expanding Internet of Things (IoT) concept is demonstrated by its use in a variety of fields, such as the transformation of magnificent urban communities, the arrangement of necessary resources and infrastructure, flexibility, transportation, cooperation, etc. A rising amount of organized data is being examined, protected, and sent under various circumstances due to the advancements in the applicability and significance of this idea [1]. The threat of exchanging the essential indicators of prosperity is created by the erratic state of flightiness of the Internet of Things concept and the use of Automatic Identification and Data Capture (AIDC) advancements, which is why this issue area has been closely examined over the past few years. The best technique to deal with stores, recover, or access personal information has changed significantly in recent years. With the rapid development of frameworks and the ability for clients to access data virtually from any location, transmitting personal or official data on a physical device has become obsolete [11].

Innovation has been at the forefront of urban development and transformation. Astute cities make use of a variety of data and correspondence advancements. Different components of a city's biological system, such as a brilliant foundation, astute operation, astute administration, astute industry, brilliant training frameworks, or brilliant security frameworks, are naturally included into an arrangement. Measurements of an agglomeration's institutional, computational, and physical spaces are coordinated by the concept of a "shrewd city." In order to provide understanding of the relatively natural creation, operation, and advancement of cities, the approach offers viewpoints such as interconnection, input, self-association, and adjustment. At the moment, cities are evolving from computerized urban

Copyright © Authors. This is an open access article distributed under the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

communities to astute urban communities, sophisticated or astute urban regions that are more innovatively organized counterparts of brilliant city ideas. When a city is instrumented, networked, adaptable, self-governing, self-repairing, and powerful, it moves closer to becoming "keen". Its offices and foundation are meticulously connected and updated through the use of ICT to provide services to their locals and other partners. According to the more comprehensive works on digital, advanced, astute, and smart urban places, the theory of brilliant urban communities as understood from the perception of innovations and segments has certain accurate features [3].

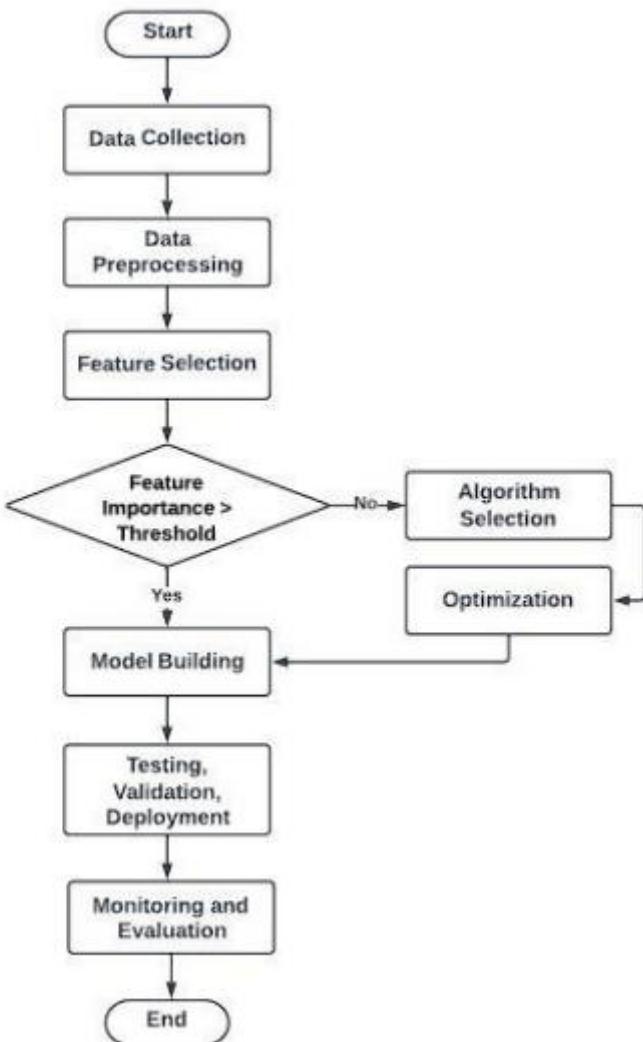
Sensor data, radio recurrence differentiating proof data, two-dimensional code, video data, and picture data are just a few of the incredibly complex information writes found in the Internet of Things. Radio recurrence, recognizable proof information stream, address/remarkable identifiers, unmistakable information, positioning information, natural information, sensor arrangement information, and so on are some of the categories into which the information in the Internet of Things can be arranged.

2. Literature Review

Today, managing mobility is a constant problem due to the size and development of cars. Every intersection has an equivalent schedule opening because the existing activity control system operates with a planning component. Given the irregular flow of automobiles, this is wasteful. Therefore, a framework that is adaptable in nature is needed. Depending on the requirements for the particular course, students should be able to choose whether to accept additional schedule vacancies. They suggested a framework for movement clog control that would be adaptable and allow each course to have its own timetable based on the thickness of the activity.

According the Internet of Things (IoT) encompasses a variety of specific bases that were used to interface physical objects and their virtual representations with the intention of using this association to improve services and correspondence ideas. The Internet of Things method, guided by Ambient Intelligence, Sensor Networks, Ubiquitous Computing, and Grid Computing, combines ideas and examples. They are driven to take use of the services provided by the Internet of Things (IoT) and its applications. This demonstrated the significance of IoT administrations and categorized them according to their life cycle and physical material. The Internet of Things was grouped based on its association with the element. Four substance relationships exist. In addition, they arranged the Internet of Things according to life cycles [16].

The sensors that measure water quality compile data from the water and send it to the Arduino IDE for two-way computer transformation. For remote information sharing with the lab, the Arduino IDE sends the data to the concentrator module via a Zigbee module. The cloud-arranged server located in the TWAD testing research center receives the data from the information concentrator located in each lake. The TWAD division personnel securely provide the requested clients with this information, which is stored in the cloud, after remotely screening it. Information about water quality parameters is stored on the cloud and securely provided to clients who request it using cryptographic techniques.


Radio Frequency Identification (RFID) and sensor organization advancements will rise to handle this new issue. The Internet of objects (IoT) is a collection of clearly associated devices and structures, including magnificent machines that interface and communicate with various machines, situations, objects, and establishments. As a result, enormous amounts of data are being created, protected, and managed into lucrative endeavors that may "charge and control" the objects to make our lives much easier and safer—and to lessen our environmental effect [5]. For example, all relationships, associations, and regular establishments require up-to-date information about individuals. The majority of establishments employ notice sheets, messages, or destinations in this manner. In any case, web access is available to users on computers and mobile devices in the majority of countries with the aim of making information exchange via the internet essentially less expensive and demanding.

3. Methods

Future smart cities will lessen or completely eradicate traffic congestion, which is currently the biggest issue facing cities. Park ride systems, pay zones, admission restrictions in city centers, and many other measures are used by governments to address these issues, but a strong public transit system should be the primary driver. By offering available transportation services, both inside and between cities, public transportation should be more competitive with private vehicle transportation (high-speed train transportation is an excellent answer) [4]. Cities are now network cities. Since they are expanding quickly, putting a lot of people and businesses in a limited area leads to serious management issues. The way cities function in the network or how they open up to the diffusion of innovation depends on their logistics. All of the activities that contribute to the city's economic, social, and cultural life cycle should be considered in urban logistics [13].

Understanding the role of perception is essential to comprehending how autonomous cars operate. Similar to how a human driver uses their senses to navigate, an autonomous car needs to swiftly and precisely sense its environment. The vehicle's eyes are image processing, which records and decodes the visual information required for decision-making. Imagine that a pedestrian unexpectedly crosses the street in front of you while you're driving. Braking or swerving to avoid a collision is your natural response [6]. Autonomous cars require the same abilities. Images of the road and its surroundings are continuously captured by cameras installed on the car [2]. These photos are then processed by algorithms that recognize items in them. Other cars, pedestrians, bikers, or even unforeseen impediments could be the cause of this. Complex computer vision algorithms are used in this object detection procedure. The YOLO (You Only Look Once) algorithm is a popular method that can identify several items in a single visual frame in real time. In order to precisely detect objects, YOLO and related algorithms examine the image's pixels, identifying patterns and shapes.

Driving safely and predictably requires staying in the correct lane. Lane detection is another way that image processing is used in this situation. To recognize lane markers on the road, differentiate between the left and right lanes, and make sure the car stays in them, specialized algorithms are made [7]. Lane detection algorithms find and follow lane markings using edge detection and line fitting techniques. To ensure correct lane positioning, these algorithms continuously analyze the video feed and modify the steering of the car. One of the most important components of safe driving is following the law. Autonomous vehicles are able to recognize and comprehend traffic signs and signals. This covers traffic lights, yield signs, stop signs, and speed restriction signs [10]. Image processing is used in traffic sign recognition to identify and read signs in real time. The sign is photographed by the car's cameras, and pertinent data is extracted by processing algorithms. This guarantees that the car complies with traffic laws. Proposed Flow Diagram shown in Fig 1.

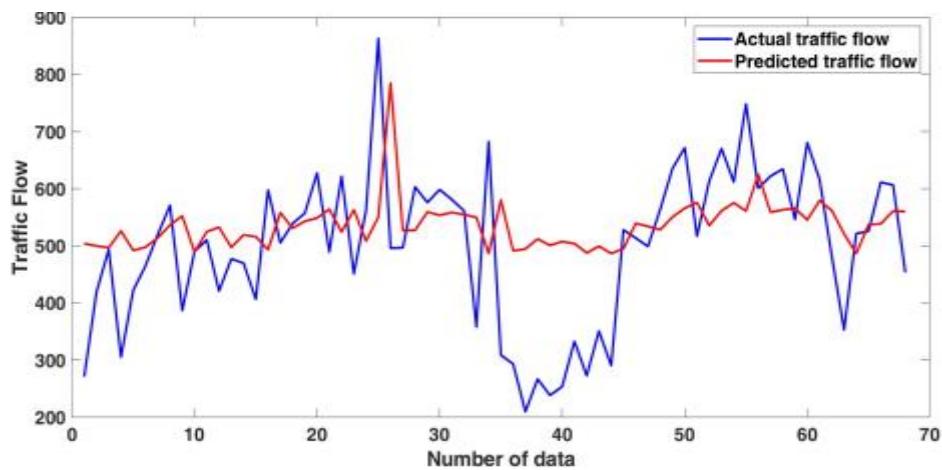
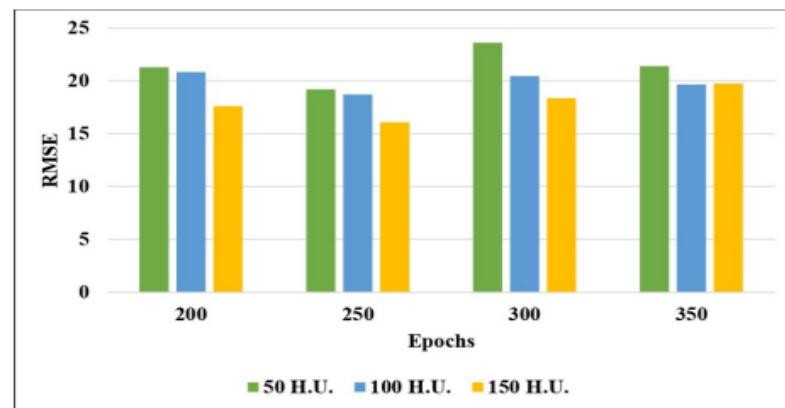


Fig 1. Proposed Flow Diagram

To prevent crashes, autonomous cars need to be able to make decisions in addition to sensing objects [8]. Image processing aids in locating roadblocks and choosing the best course of action for the vehicle. For instance, the system will start braking or steering maneuvers to prevent an accident if it notices a stationary car in the lane in front of it. A combination of control algorithms, path planning, and object detection are used to make these judgments in real time [14]. Critical data from image processing is fed into the car's onboard computer, which determines the safest route around obstacles. Autonomous cars mostly rely on deep learning and neural networks to attain high levels of perception and recognition [12]. The learning and adaptability of the human brain served as the model for these technologies. Large image datasets are used to train neural networks, which enable them to identify objects, patterns, and forms in real time.

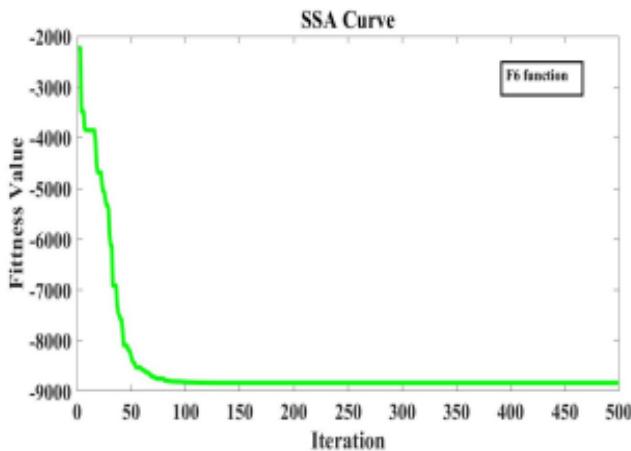

4. Result and Discussion

With the development of computer vision technologies, the idea of driverless cars is now becoming a reality. Perception building, localization and mapping, path planning, and efficiently utilizing controllers to actuate the vehicle are all areas where computer vision is helpful. The main goal is to comprehend and sense the surroundings by using the camera to detect other cars, pedestrians, roadways, and routes. The data gathered by the camera is then supplemented with sensors like radar and LIDAR. Machine learning has drawn a lot of interest in object detection classifiers and Histogram of Oriented Gradients (HOG) [9]. By analyzing its many gradients, classifiers build a model to identify shapes, and HOG preserves each pixel's shapes and orientations. Front, side, and rear cameras with ultrasonic sensors, as well as near and far radars, make up a standard vision system. This technology keeps data that may be helpful in the future and helps with safety-enabled autopilot driving. Traffic Flow Prediction using Considered Models shown in Fig 2.

Fig 2. Traffic Flow Prediction using Considered Models

According to Allied industry Research, the size of the computer vision industry is currently \$9.45 billion and is projected to grow to \$41.1 billion by 2030. The demand for driverless cars is rising globally. By 2030, the autonomous vehicle market is predicted to account for between 12% and 17% of all vehicle sales. OEMs from all around the world are taking advantage of this and investing heavily in computer vision, ADAS, and connected auto systems. It assists in recognizing moving and stationary roadside objects, such as cars, traffic signals, pedestrians, and more [15]. Vehicles must constantly recognize different objects while traveling in order to prevent crashes. Computer vision creates 3D maps by gathering full views using sensors and cameras. This facilitates object recognition, prevents collisions, and ensures passenger safety. Analysis of Prediction Results shown in Fig 3.

(a)



(b)

Fig 3. Analysis of Prediction Results

Cameras and sensors are used by computer vision technology to collect vast amounts of data, including site type, traffic and road conditions, population density, and more. This facilitates prompt decision-making and enables self-driving cars use situational awareness. To improve performance, the deep learning model can be further trained using this data. Driving in low light is much more complicated than driving in daylight because low light photography frequently produces hazy and indistinct photographs, which makes

driving dangerous. Vehicles equipped with computer vision can recognize low light levels and produce high-quality photographs and movies by utilizing infrared cameras, LIDAR sensors, and HDR sensors. Anal Convergence on the different Test Functions shown in Fig 4.

Fig 4. Anal Convergence on the different Test Functions

This makes driving at night safer. When it comes to driverless cars, changing lanes can become a difficult process. With the use of deep learning, computer vision can recognize on-road lanes using segmentation techniques and proceed in the designated lane. Computer Vision use bounding box algorithms to determine a vehicle's position in order to track and comprehend its behavioural patterns.

5. Conclusion

The accuracy of object detection has significantly increased thanks to advancements in deep learning using convolutional neural networks (CNN). Autonomous vehicles can park in crowded areas with ease thanks to outward-facing cameras, 3D reconstruction, and parking slot marking recognition, which saves time and effort. Moreover, IoT-enabled smart parking systems identify the parking lot's occupancy and notify the adjacent linked cars. Computer vision can track a driver's gestures, eye movements, drowsiness, speedometer, phone use, etc. via inward-facing cameras. These factors directly affect the safety of passengers and traffic accidents. Road fatalities are prevented and safety is increased by keeping an eye on all the criteria and promptly alerting drivers. The vision system can recognize and offer real-time data for driver performance enhancement to maximize business, particularly for logistics and fleet organizations. The use of visual technologies in the automotive industry is becoming increasingly widespread. It is now easier to implement the idea of autonomous driving thanks to the development of deep learning algorithms like route planning, object identification, and decision making powered by powerful GPUs and technologies like radars, LIDAR & HDR sensors, and SAR/thermal camera hardware. In the age of Big Data and the Internet of Things (IoTs), this special issue will bring together academics from academia and industry to showcase the most recent findings and methods pertaining to several facets of real-time image and video processing for intelligent surveillance applications. In order to support ongoing efforts to comprehend real-time image and video processing algorithms, data structures, optimization trade-offs, architectures, and applications that enable real-time smart surveillance systems, we encourage academics to submit original research publications.

References

- [1] Chakraborty, S., & Rao, Q. (2022). Introduction to the special issue on embedded systems for computer vision. *Leibniz Transactions on Embedded Systems*, 8(1), 00-1.
- [2] Kim, M. J., Go, Y. B., Choi, S. Y., Kim, N. S., Yoon, C. H., & Park, W. (2023). A Study on the Analysis of Law Violation Data for the Creation of Autonomous Vehicle Traffic Flow Evaluation Indicators. *Journal of Internet Services and Information Security*, 13(3), 185-198. <https://doi.org/10.58346/JISIS.2023.I4.013>
- [3] Yu, J., Lou, P., & Wu, X. (2009, July). A dual-core real-time embedded system for vision-based automated guided vehicle. In *2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)* (pp. 207-211). IEEE.
- [4] Zhang, X., & Rodriguez, S. (2023). Advanced Optimization Techniques for Vehicle Dynamics in Robotics. *Association Journal of Interdisciplinary Techniques in Engineering Mechanics*, 1(1), 1-13.
- [5] Kim, S. (2019). Development of Real-time Image Processing for Embedded System. *Master's Thesis*.
- [6] Spoorthi, A., Sunil, T., & Kurian, M. (2021). Implementation of Lora based Autonomous Agriculture Robot. *International Journal of communication and computer Technologies*, 9, 34-39.
- [7] Patruno, C., Marani, R., Nitti, M., D'Orazio, T., & Stella, E. (2015). An embedded vision system for real-time autonomous localization using laser profilometry. *IEEE Transactions on Intelligent Transportation Systems*, 16(6), 3482-3495.
- [8] Schmidt, J., Fischer, C., & Weber, S. (2025). Autonomous systems and robotics using reconfigurable computing. *SCCTS Transactions on Reconfigurable Computing*, 2(2), 25–30. <https://doi.org/10.31838/RCC/02.02.04>
- [9] Sadulla, S. (2024). Techniques and applications for adaptive resource management in reconfigurable computing. *SCCTS Transactions on Reconfigurable Computing*, 1(1), 6-10. <https://doi.org/10.31838/RCC/01.01.02>
- [10] Meribout, M., Baobaid, A., Khaoua, M. O., Tiwari, V. K., & Pena, J. P. (2022). State of art IoT and Edge embedded systems for real-time machine vision applications. *IEEE Access*, 10, 58287-58301.
- [11] Prasath, C. A. (2024). Cutting-edge developments in artificial intelligence for autonomous systems. *Innovative Reviews in Engineering and Science*, 1(1), 11-15. <https://doi.org/10.31838/INES/01.01.03>

- [12] Ahmad, I., & Pothuganti, K. (2020, August). Design & implementation of real time autonomous car by using image processing & IoT. In *2020 Third international conference on smart systems and inventive technology (ICSSIT)* (pp. 107-113). IEEE.
- [13] Kavitha, M. (2024). Embedded system architectures for autonomous vehicle navigation and control. *SCCTS Journal of Embedded Systems Design and Applications*, 1(1), 31-36. <https://doi.org/10.31838/ESA/01.01.06>
- [14] Geetha, K. (2024). Advanced fault tolerance mechanisms in embedded systems for automotive safety. *Journal of Integrated VLSI, Embedded and Computing Technologies*, 1(1), 6-10. <https://doi.org/10.31838/JIVCT/01.01.02>
- [15] Kryjak, T., Komorkiewicz, M., & Gorgon, M. (2018). Real-time hardware-software embedded vision system for ITS smart camera implemented in ZynqSoC. *Journal of Real-Time Image Processing*, 15, 123-159.
- [16] Kato, S., Tokunaga, S., Maruyama, Y., Maeda, S., Hirabayashi, M., Kitsukawa, Y., & Azumi, T. (2018, April). Autoware on board: Enabling autonomous vehicles with embedded systems. In *2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPs)* (pp. 287-296). IEEE.
- [17] Shehaz, F. (2020, August). An embedded vision system for autonomous vehicles. In *ODS 2020: Industrial Optical Devices and Systems* (Vol. 11500, pp. 91-98). SPIE.
- [18] Litzenberger, M., Posch, C., Bauer, D., Belbachir, A. N., Schon, P., Kohn, B., & Garn, H. (2006, September). Embedded vision system for real-time object tracking using an asynchronous transient vision sensor. In *2006 IEEE 12th Digital Signal Processing Workshop & 4th IEEE Signal Processing Education Workshop* (pp. 173-178). IEEE.
- [19] Sindhu, S. (2025). Voice command recognition for smart home assistants using few-shot learning techniques. *National Journal of Speech and Audio Processing*, 1(1), 22–29.