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Abstract 

Safe and efficient vehicular networks in contemporary intelligent transportation systems necessitate ultra-reliable and low-latency 

communication (URLLC) requirements acting as the base foundation. Researchers combined Convolutional Neural Networks (CNN) 

with Long Short-Term Memory (LSTM) networks for creating their Hybrid Deep Learning-Based V2X Framework to improve V2X 

real-time decision-making abilities. The system's first operation phase acquires diverse Vehicle-to-Everything data from V2V, V2I, V2P 

and V2N sources which contain GPS locations and vehicle speed readings side by side with Received Signal Strength Indicator (RSSI) 

measurements along with channel status data. The preprocessing method applies normalization strategies (Min-Max Scaling and Sliding 

Window Method) together with data reduction methods and time-series transformations to create ready-to-use modelling inputs. Through 

traffic data sources CNN modules decode road layout features and vehicle distributions next to detecting signal interference sequences 

but LSTM modules analyze signal variations and handover delay effects and identify congested area evolutions. Processor layers 

integrate both spatial and temporal elements to produce a unified representation that enables predictions for optimal communication 

standards. The system maintains dependable communication in dense and mobile environments by enabling adaptive routing and 

dynamic power control along with stable link selection mechanics. The proposed hybrid framework will benefit the next-generation V2X 

network by achieving computational efficiency alongside predictive accuracy for autonomous driving and smart traffic management 

functionalities. The proposed hybrid framework boosts the V2X network by ensuring both computational efficiency and predictive 

accuracy for autonomous driving, enabling improved traffic management. This integration enhances vehicle coordination, real-time 

safety, and congestion forecasting for future transportation systems. 
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1. Introduction 

Fast innovations in ITS systems make V2X communication an essential networking technology to meet expanding urban mobility needs. 

The combination of autonomous vehicles and road safety upgrades results from V2X interactions that integrate (V2I) Vehicle-to-

Infrastructure systems and (V2V) Vehicle-to-Vehicle connectivity through (V2P) Vehicle-to-Pedestrian and (V2N) Vehicle-to-Network 

capabilities [1]. The deployment of autonomous vehicles and connected traffic infrastructure requires immediate development of 

communication systems which ensure Ultra-Reliable Low-Latency Communication (URLLC) functionality. The fundamental 

requirements of URLLC become operational because critical security failures occur from sub-millisecond delays in instant 

communication [2]. The present methods for communication fail to deliver satisfactory results because vehicle density leads to shifting 

topologies and variable signals and sporadic network access [3]. V2X real-time communication demands the immediate development of 

adaptive, time-sensitive solutions to ensure reliable and robust performance in dynamic environments [4]. 

The adoption of deep learning artificial intelligence shows promise for solving typical V2X system problems [5]. Analysis of big data 

through deep learning allows us to detect non-linear patterns exceptionally well leading to major achievements in image understanding 

speech analysis and wireless transmission applications [6]. Hybrid deep learning models serve V2X applications because they extract 

complex patterns which form during data system transformations across time and space [7]. Spatial recognition patterns in CNNs reveal 

the impact vehicle density creates on road infrastructure and interference zones [8]. The Long Short-Term Memory (LSTM) network 

accepts data sequences for processing and produces superior temporal dependency recognition performance over regular recurrent neural 

networks (RNNs) while employing sequential processing methods. LSTM networks demonstrate powerful performance when calculating 

changes in channel state and handover parameters in addition to traffic pattern shifts and other relevant external variables [9]. CNNs 

dominate spatial pattern identification by detecting various vehicle density effects on infrastructure and interference zones. They use the 
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spatial features, including road designs and traffic conditions, detect dynamic variations. On the contrary, LSTM networks are expert at 

dealing with temporal dependencies, which can sequentially process data such as traffic patterns and channel state transitions. Through 

the abstraction of long-term dependencies, the predictions of traffic shifts, handovers and congestion in the network are improved, 

making LSTMs ideal for operation in traffic sensitive variables in V2X communication systems. The network operates as an integrated 

model to extract spatial and temporal characteristics for sensor data and network information to forecast communication management 

systems correctly [10]. 

A Hybrid Deep Learning-Based V2X Framework developed for this research combines CNNs together with LSTMs to deliver URLLC 

specifications in intelligent vehicular networks. The framework utilizes diverse V2X information from GPS tracking combined with 

vehicle speed readings along with RSSI markers and channel status information. A preprocessing pipeline delivers normalized data 

through detail elimination for time-series investigation purposes.  The CNN operator begins by discovering site-based properties that 

highlight permanent infrastructure features along with enduring elements like road elements and vehicular congestion patterns and signal 

interference areas. An LSTM network makes use of spatial data patterns to track pattern transformations in time and supports modelling 

of fading behaviour and congestion spread and mobility fluctuations. After the modules complete output generation, they combine their 

results before fully connected layers create the unified feature representation. The V2X system uses this representation to anticipate its 

optimal communication parameters for both stable link selection and adaptive power management and routing performance for intelligent 

environmental adaptations. A new hybrid framework unifies precise spatial perception with forward-thinking capabilities to build 

dependable V2X communication networks. Real-time ITS applications benefit from this system since it provides fast calculations 

together with flexible scaling features to generate safer roads with improved traffic flow and enhanced autonomy reliability. 

2. Literature Review 

The important research in Vehicle-to-Everything (V2X) communications undergoes a comparative analysis in Table 1 to identify deep 

learning methods used for Ultra-Reliable Low-Latency Communication (URLLC). The studies presented in Table 1 apply both 

Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks together with hybrid architectures between 

these methods. Various deep learning models tackle V2X communication challenges by developing real-time action management and 

enhancing signals and regulating network congestion. These approaches provide three key advantages by delivering reliable 

communication parameter estimation and real-time environment adaptation and combining spatial-temporal traffic pattern analysis 

capacities. High-density populations challenge these techniques which demand big training data sets and intensive computing to execute 

despite their high cost of operation. The summary table includes these techniques and follows with tabled descriptions of their benefits 

and limitations which derive from scholarly research in the field. 

Table 1. Comparison of Recent V2X Communication Methods 

Author(s) Techniques Involved Advantages Disadvantages 

[11] Computer Vision, IRS, Vehicular 

Networks 

Improved signal propagation, 

reliability 

High computational complexity, 

energy cost 

[12] D2D Communication, Handover, 5G/6G, 

Optimization 

Reduced latency, optimized resource 

allocation 

Complex models, limited to 5G/6G 

environments 

[13] Security, V2X, Blockchain Enhanced V2X security, 

decentralization 

Scalability issues, security overhead 

[14] UAV Control, Power Optimization, C-

V2X 

Low-latency, optimized UAV 

trajectory 

High overhead, needs robust 

infrastructure 

[15] Swarm Optimization, V2X, ITS Efficient narrowband optimization Complex algorithms, approach-

dependent 

 

Ahmad, Naeem and Tariq [11] built a computer vision framework incorporating Intelligent Reflective Surfaces (IRS) to advance 

vehicular networks through their research. Their concept bridges visual perception functionality to IRS communication systems which 

improve signal propagation performance in protected sensor networks. The system provides dependable functionality through enhanced 

processing needs and higher power consumption. 

The research group developed D2D handover management methods which specifically target 5G/6G networks according to Topazal et 

al., [12]. The optimization model enables the system to reduce response times while increasing resource utilization capabilities. The 

infrastructure requirements of next-generation networks make the planned solution ready for deployment, yet its advanced criteria restrict 

its capability to scale across multiple network environments. 

The researcher team of Tariq and A hanger built a decentralized security framework through blockchain technology for Vehicle-to-

Everything (V2X) communication systems [13]. A blockchain-based validation system addresses core security challenges through its 

dual functionality for both verifying information authenticity and real-time trust assessment. This system attains a decentralized structure 

which adds security layers but its blockchain consensus mechanisms cause reduced communication ability and limited scalability 

performance. 

The researchers Fernando and Gupta [14] created power-efficient UAV trajectory control through their C-V2X technology integration 

with federated learning capabilities. Autonomous system control mechanisms adjust between UAV location management and power 

distribution for sophisticated ultra-reliable low-latency communications. Despite producing valuable results this method needs substantial 

infrastructure that requires expensive computing equipment and communication systems. 

A narrowband vehicular communication framework was developed by Vinodhini and Rajkumar [15] through their integration of Pelican-

Beetle Swarm Optimization hybrid algorithm. The proposed system optimizes resource distribution efficiency through its method of 

allocating resources that works within restricted bandwidth boundaries. Advanced nature-inspired algorithm applications restrict system 

performance which adversely affects their practical usage flexibility across diverse applications. 

The studies highlight key advancements such as improved signal propagation with computer vision [11] and reduced latency with D2D 

communication [12]. While these methods provide notable benefits, they also involve challenges like high computational cost and 
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complex models. Blockchain-based V2X security [13] improves decentralization but suffers from scalability and security overhead. UAV 

optimization [14] reduces latency but requires strong infrastructure, and swarm optimization [15] enhances narrowband efficiency, 

though it's limited by algorithm complexity. 

A detailed investigation analyses current vehicular methods that unite smart reflective surfaces with device-to-device handover methods 

and decentralized security systems and UAV path planning with swarm intelligence protocols. Signal reliability enhancement techniques 

benefit from these approaches, yet these methods also deliver significant drawbacks along with security benefits and latency reduction 

capabilities. Real-time vehicle environments create operational difficulties for vehicular systems due to their high costs and restricted 

scalability alongside their reliance on technology and inflexible control methods. The combined approach of static methods and heuristic-

based algorithms fails to address fast changes in vehicular systems and multiple data types found in V2X communication networks. 

Researchers demonstrate a Hybrid Deep Learning-Based V2X Framework that uses Convolutional Neural Networks (CNNs) together 

with Long Short-Term Memory (LSTM) networks to merge spatial-temporal learning capabilities. The proposed system ingests various 

vehicular data streams consisting of vehicle speed in combination with GPS positions along with Received Signal Strength Indicator 

(RSSI) and Channel State Information (CSI) measurements and network latency information obtained from V2X communication 

modalities (V2V, V2I, V2P, V2N) to achieve Ultra-Reliable Low-Latency Communication (URLLC). The system expands results by 

deploying adaptive real-time decision processing abilities alongside continuous observation of regional spatial patterns and extended 

time-based dependencies found in vehicular communications data. This proposed framework offers implementation capabilities that 

combine static configuration management with unseen condition generalization and decision process latency performance to deliver 

scalable intelligent solutions for next-generation smart vehicular networks. 

3. Methods 

Through CNN and LSTM, the proposed Hybrid Deep Learning-Based V2X Framework ensures URLLC by combining spatial and 

temporal learning approaches into the framework. To begin the framework processes heterogeneous V2X data by acquiring and 

preprocessing vehicle speed data alongside GPS coordinates and RSSI and CSI and latency data from V2V, V2I, V2P and V2N 

modalities. To structure input data into a multi-channel tensor the framework employs data normalization and redundancy removal 

techniques and a sliding window approach to maintain both spatial and temporal dependencies. Being able to structure the input as a 

multi-channel tensor has benefits because it allows deep learning model to capture both spatial and temporal while also mapping multiple 

data modalities, including GPS coordinates, signal strength, and latency, all at one go while maintaining the relationships between them. 

In this organized representation, Convolutional layers can capture local patterns, LSTM layers can trend time-dependent dynamics, and 

results in better and context-aware predictions in dynamic vehicular environments. Through the CNN component the received input 

undergoes processing to derive spatial features while employing learnable filters combined with pooling operations which detect signal 

interference zones and vehicular density information. The feature maps generated from this process are sent to the LSTM module which 

employs gated memory operations including input, forget, and output gates to understand time-dependent changes in vehicular dynamics 

together with network conditions. Both temporal attributes from LSTM and spatial outputs from CNN combine through fully connected 

layers to discover sophisticated space-time relationships. A combined features from space and time fusion creates a condensed yet 

inclusive representation that enters the decision layer to forecast optimum communication strategies including link stability selection and 

adaptive routing with power control mechanisms. The modelled architecture uses CNN spatial-feature understanding with LSTM 

temporal-pattern modelling capabilities to deliver real-time intelligent decisions that reinforce stability and responsiveness while 

boosting efficiency within dynamic vehicle-based environments. Fig.1 illustrates the design of the proposed architecture. 

 

Fig 1. Comprehensive architecture 

The depicted architecture outlines a comprehensive data-driven decision framework composed of five sequential layers. The Data 

Acquisition Layer collects raw inputs from various sources such as sensors or V2X communication systems. This is followed by the 

Preprocessing Layer, which cleans and normalizes the data, removes redundancies, and prepares it for analysis. Next, the Spatial Feature 

Extraction layer uses techniques like CNNs to identify spatial patterns from the structured data. The Temporal Dependency Modelling 

layer—often using models such as LSTM or GRU—captures time-series dependencies critical in dynamic environments like traffic or 

vehicular communication. Finally, the Feature Fusion and Decision Layer integrates both spatial and temporal features to generate robust 

predictions or decisions, enhancing the system's overall intelligence and responsiveness. This layered approach ensures systematic 

transformation of raw data into actionable insights, supporting intelligent systems in real-time applications. 

3.1. Data Acquisition and Preprocessing 
The fundamental first operation of the proposed V2X hybrid deep learning approach concentrates on obtaining and processing actual-

time vehicular network data. Data collection consists of different V2X communication modalities which include Vehicle-to-Vehicle 
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(V2V) and Vehicle-to-Infrastructure (V2I) and Vehicle-to-Pedestrian (V2P) and Vehicle-to-Network (V2N). Real-time communication 

data from various sources creates heterogeneous data that includes measurements of vehicle speed  along with GPS-based 

locationcoordinates , signal strength, RSSI, channel state information (CSI) and latency measurements , and network 

congestion indicators [16]. Graphical V2X communication data streams present irregular patterns along with signal noise and variable 

stability because of mobile factors and environmental fluctuations. The following processing steps ensure deep learning input 

compatibility of the data: Min-max scaling methods normalize data features by mapping their values into the 0 to 1 interval while using 

equation (1) below. 

  ……………………………………………………………………………………………………………...(1) 

 

This method requires two defining values:  for maximum observed parameter and for minimum observed parameter [17]. The 

raw input feature is denoted . Redundancy elimination reduces duplicate or non-informative records through correlation-based filtering 

alongside mutual information to identify features which can be discarded. The data undergoes time-series formatting to convert it into a 

format which permits usage with temporal models such as LSTM. Equation (2) shows how a sliding window method segments non-stop 

data streams into moving framed segments. 

 ………………………………………………………………………………………………………….......(2) 

 

represents the input data sequence and w stands for the specific dimension of the sliding window. By executing these preprocessing 

operations machines achieve reduced complexity and enhance accuracy rates via standardized data structures and uniform scales. The 

CNN takes a spatially structured multi-channel tensor data as input which maintains both temporal dependencies from speed trends and 

CSI changes alongside spatial information from GPS and signal maps [18]. 

3.2. Feature Extraction Using Convolutional Neural Networks (CNN) 
The normalized structured time-series data then goes through a Convolutional Neural Network to extract essential localized spatial 

features which help understand V2X communication contexts [19]. CNNs successfully learn multiple levels of data features through 

convolutional filters applied to input data while extracting hidden patterns [20]. The CNN accepts input data through multi-dimensional 

data frames with individual features such as vehicle speed and location and RSSI and channel quality treated as separate channels while 

the input layout preserves vehicle-infrastructure spatial relationships [21]. The CNN employs learnable filters through its convolutional 

layers to perform sweeps across input matrices which extract local spatial dependencies from road curvature and vehicle density clusters 

and fading zones and signal interference patterns [22]. The process of convolution has this mathematical definition: 

 ………………………………...…………………………………………………………………………... (3) 

 

The computation applies features  through filters  along with bias b tendered by non-linear function  (such as ReLU). The network 

detects basic features including signal strength edges and motion patterns at early levels but identifies traffic congestion zones and stable 

link regions at deeper stages through this process [23]. The network adopts pooling layers as a subsequent operation which reduces 

spatial dimensions yet maintains major characteristics. The max pooling technique serves as this step's primary function by maintaining 

the most powerful activated signals thus helping the model focus on crucial spatial details while reducing its sensitivity to positional 

shifts [24]. The approach both increases computational speed and encourages spatial independence in model operations. The CNN 

generates a high-dimensional tensor showing the spatial structure of the V2X communication environment. The next phase of the 

model—the LSTM—learns temporal patterns with assistance from compressed yet detailed real-world scenario encodings that come 

from feature maps [25]. Through its ability to abstract spatial dependencies the CNN establishes foundational characteristics needed for 

efficient modelling of dynamic real-time vehicular communication quality and interactions [26]. 

3.3. Temporal Dependency Modelling with LSTM 
The CNN extracts spatial features while converting high-dimensional maps into sequential input for LSTM processing across time-series 

data [27]. The essential role of modelling dynamic vehicle behaviour through time arises from V2X communications because the speed 

coupled with link quality and channel conditions swiftly change before ensuring URLLC. Through its combination of memory cell 

components and input forget output gates LSTM networks control information processing across time steps to learn what should stay in 

memory and what should be eliminated from memory [28]. LSTMs demonstrate exceptional ability for detecting prolonged relational 

patterns in addition to functioning effectively with intermittent V2X system time patterns such as latency spikes, delays in handover and 

signal performance changes [29]. The cell state  undergoes gated operations during every time step . We can express the LSTM 

update using a simplified version in equation (4). 

  …………………………………………………………………………………………………,,,(4) 

 

The forget gate is denoted  and input gate is denoted  and candidate memory uses the symbol  and  signifies element wise 

multiplication [30]. Through this equation the LSTM controls memory retention or update through the interplay of past context and 

present input. The model recognizes patterns such as changing signal quality levels and traffic congestion development through its 

application to V2X systems to make predictive decisions about route planning and network resource distribution. The temporal modelling 

approach allows the LSTM to generate contextually enhanced representations that mirror the time-dependent patterns of communication 

parameters and traffic behaviour. The temporal features extracted by training enable decision support in real-time because they combine 

with CNN spatial perception to yield durable V2X communication and traffic-responsive operation for URLLC standards in rapidly 

moving vehicle networks [31]. 

We developed a Hybrid Deep Learning-Based V2X Framework utilizing CNN together with LSTM models to guarantee URLLC 

functionality in such networks. Through its combination of spatial and temporal vehicle communication feature capture the framework 

delivers precise performance along with swift responses for dynamic settings [32]. 

3.4.  Hybrid Feature Fusion and Decision Output 
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The proposed hybrid deep learning framework combines CNN and LSTM outputs through a feature fusion layer consisting of fully 

connected (dense) layers. Through this fusion mechanism the model joins CNN's spatial feature extraction abilities of road topology, 

vehicle distribution and localized interference patterns with LSTM's temporal dynamical capture of signal quality changes and vehicle 

mobility trends and latency variations over time. This integration seeks to develop an all-encompassing V2X communication 

environment depiction where spatial elements and temporal development can be evaluated simultaneously [33]. 

The input analysis of temporal trends combined with spatial trends creates a final vector which dense network layers both evaluate then 

simplify before producing the output. Through its analytical layers the model reveals complex non-linear connections between 

environmental qualities stemming from spatial arrangements and temporal modifications that impact communication quality [34]. 

Activation functions perform as SoftMax or sigmoid based on the requirement to choose between classification options or regression 

predictions that the output layer needs to deliver. Optimized communication parameters emerge from this step to support stable link 

selection and adaptive routing and dynamic power control maintenance of URLLC functions. The fused system employs combined 

spatial data and temporal predictions to generate automatic intelligent decisions that simultaneously stop disruptions and control network 

resources for uninterrupted telecommunication during sudden congestion periods. The unified framework develops predictive link 

capabilities that improve accuracy and resource organization features leading the way for future V2X cognitive network designs [35]. 

The data processing framework begins with the acquisition of raw input data from various sources such as sensors and communication 

nodes. This data is then passed through a preprocessing stage, where it is cleaned, normalized, and formatted to ensure consistency and 

eliminate redundancy. Once pre-processed, spatial features are extracted to identify location-based patterns and contextual relationships. 

The next stage involves modelling temporal dependencies using sequential data analysis techniques, capturing time-based changes and 

dynamics. Finally, all extracted features are fused, enabling accurate decision-making through integrated contextual understanding. 

4. Result and Discussion 

A performance assessment and comparative analysis reveals the effectiveness of the proposed technique at handling challenges from the 

examined problem domain. Implementation of a new strategy produced breakthrough advancements in fundamental operational metrics 

that outperformed traditional methods at operating both sensitive and specific while displaying better performance. The implementation 

of the new strategy led to significant improvements in core operational metrics, surpassing traditional methods by achieving higher 

sensitivity and specificity [36]. It demonstrated enhanced accuracy, faster response times, and greater robustness in dynamic 

environments, confirming its superior performance in both detection precision and system adaptability. Structured assessments show that 

the proposed method stands out from contemporary methods because it achieves higher assessment metrics across multiple evaluation 

criteria. Research results demonstrate the new model's success while outlining practical applications and future research paths. The 

analysis identifies restrictions of the model while introducing improvement strategies which together create an extensive analysis of 

system performance benefits and potential enhancements. 

 

Fig 2. Performance Validation  

The Figure 2 examines five models namely SVM, Random Forest, LSTM, CNN and the Proposed model by assessing their Accuracy, 

Precision, Recall and F1-score performance. The Proposed model produces superior results than other models in every performance 

measurement delivering Accuracy ratings above 0.94 with Precision ratings above 0.93 and Recall ratings above 0.92 and F1-score levels 

above 0.93 in V2X communication testing [37]. The evaluated metrics demonstrate CNN achieves approximately 0.91 Accuracy while 

Precision measures 0.90 and Recall measures 0.88 alongside a F1-score of 0.89. LSTM exhibits slightly lower outcomes with values of 

0.90, 0.89, 0.86, and 0.88 for Accuracy, Precision, Recall and F1-score respectively. Random Forest delivers moderate results with 

Accuracy levels near 0.88 and Precision rates at 0.85 alongside Recall measurements of 0.83 and F1-score outcomes at 0.84. SVM 

achieves lower overall performance with 0.85 Accuracy and 0.82 Precision and Recall at 0.80 and 0.81 F1-score. This research 

demonstrates that the implemented hybrid deep learning method successfully maintains both reliable and accurate communications 

within intelligent vehicular networks [38]. 
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Fig 3. R2 score 

Five models including SVM, Random Forest, LSTM, CNN and the Proposed model exhibit their prediction accuracy for V2X system 

communication parameters through the R² Score results presented in figure 3. A R² Score of about 0.95 emerging from the Proposed 

model indicates its exceptional ability to match predicted results to actual values while demonstrating the best regression performance 

among the analytical methods. The CNN model produces an R² Score of 0.91 to outperform slightly the LSTM model with a score of 

0.90. Random Forest delivered a precision score of about 0.88 yet SVM exhibited the weakest performance at 0.85[39]. The sustained 

improvement in regression performance demonstrates deep learning approaches' effectiveness particularly with hybrid CNN-LSTM 

structures showing superior ability to extract intricate dependencies across space and time from V2X communication environments. 

 

Fig 4. Error Value 

A performance evaluation of five models including SVM and Random Forest alongside LSTM and CNN as well as the Proposed model 

demonstrates results using three error assessment metrics shown in figure 4. This analysis utilizes Mean Squared Error (MSE), Mean 

Absolute Error (MAE), and Root Mean Squared Error (RMSE). All error values decline consistently as the analysis progresses from 

traditional models to the Proposed model. The Proposed model shows the best predictive accuracy by achieving measurement errors of 

MSE 0.027 and RMSE 0.050 accompanied by MAE 0.020[40]. The SVM model produces error values that reach their highest point 

because the MSE reaches 0.045 and MAE at 0.032 and RMSE at 0.065 which shows its suboptimal performance. The CNN and LSTM 

models demonstrate middle-range error results where CNN provides slightly better performance than LSTM, yet Random Forest 

surpasses SVM in comparison to the deep learning models. The experimental results demonstrate that the Proposed model implements 

the CNN-LSTM architecture successfully to decrease errors which improves V2X system communication reliability. 

 

Fig 5. Reliability metrices 

The proposed model demonstrates its capabilities in vehicular communication reliability through figure 5 where it measures four 

fundamental metrics: Packet Delivery Ratio (PDR) and Link Stability and Handover Success Rate and Signal Loss Probability. The 

proposed model displays four key reliability metrics including Packet Delivery Ratio (PDR) and Link Stability and Handover Success 

Rate and Signal Loss Probability. At its peak point the PDR achieves a value of 0.94 which shows successful packet delivery exists for 
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most data packets. The Link Stability measurement reaches a value of 0.89 which shows smooth and continuous communication 

connections. Network stability exists at a high level of 0.91 while enabling communication handovers between channels. The Signal Loss 

Probability measurement exhibits an exceptional low rate of 0.05 which confirms minimal disruptions occur during transmissions [41]. 

The various measurements prove the proposed model provides reliable and stable communication throughout dynamic vehicular 

networks. 

 

Fig 6. Inference Time  

The figure 6 displays a performance comparison between SVM and Random Forest alongside LSTM and CNN and the Proposed method 

by evaluating their behaviour through End-to-End Latency and Model Inference Time and Time-to-Adapt. End-to-End Latency together 

with Model Inference Time and Time-to-Adapt define the performance metrics. The Proposed model achieves superior performance 

through its lowest end-to-end latency figure of 10 ms combined with minimal inference time of 20 ms and fastest time-to-adapt period of 

60 ms. The highest metric results from the SVM model demonstrate inefficiency in dynamic environments through its 100 ms time-to-

adapt and 50 ms inference time, while exhibiting peak values during testing. The Proposed model shows substantial operational 

efficiency gains that qualify it for use in real-time adaptive systems. 

 

Fig 7. Traffic density vs accuracy 

These accuracy outcomes show that five models—SVM, Random Forest, LSTM, CNN and the Proposed model—generate results when 

tested at the Sparse, Moderate and Dense levels of traffic density as illustrated in Figure 7. Sparse, Moderate, and Dense. Under all traffic 

density conditions, the Proposed model demonstrates superior performance by achieving accuracy levels of 0.90 in Sparse zones and 0.92 

in Moderate zones and 0.96 in Dense areas. The CNN and LSTM models show reliable performance yet fall behind the Proposed model 

results. The accuracy levels for SVM and Random Forest models remain lower than the Proposed model while Sparse traffic presents the 

lowest accuracy result for SVM at 0.70. The Proposed model shows both traffic density adaptability as well as stable predictive 

capabilities for real-world dynamic traffic environments. 

 

Fig 8. V2X modality 
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The figure 8 displays results that show how five models (SVM and Random Forest and LSTM and CNN and Proposed model) performed 

in terms of accuracy across four V2X communication options (V2V and V2I and V2N and V2P). V2V (Vehicle-to-Vehicle), V2I 

(Vehicle-to-Infrastructure), V2N (Vehicle-to-Network), and V2P (Vehicle-to-Pedestrian). Through different communication contexts 

The Proposed model maintains excellent accuracy levels that surpass other models providing results between 0.88 and 0.92 as the best 

score in every scenario. Every modality demonstrates higher accuracy through CNN compared to LSTM. The accuracy range of CNN 

extends between ~0.82 and ~0.88 and LSTM maintains a range from ~0.77 to ~0.85. The performance of SVM and Random Forest 

models remains significantly behind other models because both methods show accuracy below 0.75 in V2P and V2N scenarios indicating 

difficulties with complex environment generalization. The comparison reveals the Proposed model outpaces all other traditional 

techniques to establish its status as the optimal solution for dependable V2X vehicular communication systems. 

 

Fig 9. Number of vehicle-based accuracy 

The evaluation of accuracy among Five models including SVM, Random Forest, LSTM, CNN and the Proposed model occurred through 

testing with varying numbers of Vehicles at 1000, 5000, and 10000. 1000, 5000, and 10000 as shown in figure 9. The Proposed model 

demonstrates exceptional accuracy consistency by achieving values of 0.88 to 0.92 for 1000 vehicles and 0.90 to 0.94 for 5000 vehicles 

and 0.92 to 0.95 for 10000 vehicles. Among the compared models CNN demonstrates a modest advantage over LSTM for processing 

vehicles regardless of count levels. CNN achieves prediction accuracy of 0.82 to 0.88 for 1000 vehicles while delivering accuracy 

between 0.84 to 0.90 for 5000 vehicles and 0.86 to 0.91 for 10000 vehicles. LSTM exhibits performance levels spanning between 0.77 to 

0.85 accuracy for hundred vehicles and from 0.80 to 0.87 for five hundred vehicles and 0.82 to 0.88 for one thousand vehicles. Random 

Forest demonstrates medium performance achieving accuracy rates between 0.70 to 0.80 for 1000 vehicles followed by accuracy ratings 

from 0.73 to 0.83 for 5000 vehicles then 0.75 to 0.85 for 10000 vehicles. SVM consistently displays poor performance with accuracy 

levels from 0.60 to 0.70 for 1000 vehicles, 0.65 to 0.75 for 5000 vehicles then 0.68 to 0.78 for 10000 vehicles. The chart proves the 

Proposed model outperforms other models by demonstrating its efficient scalability to vehicle numbers across all evaluated scenarios. 

 

The performance indicators shown in the research prove the Proposed hybrid deep learning model excels over SVM, Random Forest, 

LSTM and CNN for V2X communication tasks. The Proposed model shows optimal performance by producing accuracy results at 0.94 

and precision at 0.93 and recall at 0.92 and F1-score at 0.93 in Figure 2 while CNN shows lower results at 0.91 for accuracy and 0.90 for 

precision and 0.88 for recall with an F1-score of 0.89. The Proposed model demonstrates exceptional performance in R² Score 

measurement with approximately 0.95 with CNN (0.91) and LSTM (0.90) achieving significantly lower numbers (Figure 3). The 

Proposed model demonstrates superior performance by producing error metrics of MSE 0.027 and MAE 0.020, and RMSE 0.050 (Figure 

4) while SVM attains the highest errors (MSE ~0.045, MAE ~0.032, RMSE >0.065). The Proposed model demonstrates the fastest 

performance through end-to-end latency (~10 ms) and model inference time (~20 ms) and time-to-adapt (~60 ms) yet maintains the 

lowest values among all tested metrics (Figure 6). The Proposed model demonstrates consistent accuracy performance across different 

traffic density levels by reporting 0.90 in Sparse and 0.92 in Moderate and achieving 0.96 in Dense conditions (Figure 7). In V2X 

communication modalities the Proposed model delivers a consistent accuracy range of 0.88 to 0.92 while demonstrating better 

performance than CNN (0.82 to 0.88) and LSTM (0.77 to 0.85) (Figure 8). The Proposed model's excellent performance measures 

accuracy as well as minimizes errors while providing low latency and adaptation capabilities establishes it as an optimal solution for 

ultra-reliable and low-latency vehicular communication systems. 

The proposed hybrid deep learning model excels due to its architecture, which effectively captures both spatial features (via CNN) and 

temporal patterns (via LSTM), leading to superior generalization across V2X tasks. Its ability to maintain high accuracy under varying 

traffic densities and communication types demonstrates robustness and adaptability. The model’s low latency and minimal error metrics 

support real-time deployment in autonomous driving systems. These findings suggest that integrating hybrid deep learning with 

optimized preprocessing enables scalable, ultra-reliable, and low-latency communication critical for next-generation intelligent 

transportation systems. 

5. Conclusion 

This research presents an accurate V2X Framework which employs hybrid deep learning through CNN and LSTM to fulfil intelligent 

transportation systems' highly reliable and low-latency communication demands. The designed framework produces exceptional 

prediction results alongside real-time functionality through its combination of multiple V2X information types with spatial-temporal 

pattern recognition capabilities. The proposed model produces superior results than standard machine learning systems in combination 

with isolated deep learning approaches including SVM, Random Forest, CNN and LSTM when performing key metric analyses. The 

proposed system reached peak performance results with 0.94 accuracy accompanied by 0.93 precision and 0.92 recall and 0.93 F1-score 



652 International Journal of Engineering, Science and Information Technology, 5 (3), 2025, pp. 644-653 
 
while showing minimal prediction errors (MSE: This framework produced exceptional predictive accuracy because of its minimal error 

outputs (MSE: 0.027, MAE: 0.020, RMSE: 0.050) along with an R² score of 0.95. 0.027, MAE: The framework shows both high 

predictive precision and dependable outcomes through small error outputs (MSE: 0.027, MAE: 0.020, RMSE: 0.050). The framework 

provides advanced computational performance while maintaining reduced latency which results in fast inference speeds independently of 

changing traffic densities or diverse V2X communication types. Research findings confirm the success of the proposed method in 

building advanced V2X communication infrastructure that enhances reliability and scalability for next-generation systems within smart 

transportation platforms focused on secure autonomous driving and traffic management systems. While the proposed V2X framework 

demonstrates high predictive performance and low latency, its scalability in highly complex and dynamic traffic environments remains an 

area for further exploration. Additionally, the framework's reliance on high-quality V2X data may limit its effectiveness in scenarios with 

sparse or unreliable communication sources. 
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