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Abstract 

 

Start-up organisations operate under fast timelines, lean staffing, and constantly shifting priorities, exposing employees to chronic 

workload pressure and emotional strain. Unmanaged burnout in these settings threatens individual well-being, talent retention, and long-

term execution capacity. This study proposes a multivariate burnout risk scoring approach that aims to identify and prioritise employees 

at elevated risk before full deterioration occurs, enabling early managerial intervention rather than reactive recovery. The proposed 

pipeline integrates principal component analysis (PCA), Random Forest, and Support Vector Machine (SVM). PCA is first applied to 

reduce redundancy across workplace indicators, yielding five principal components (PC1–PC5) that together explain 88% of the total 

variance in self-reported stress level, job satisfaction, emotional exhaustion, work-life balance, performance, and social interaction. These 

components are then used as predictors in two supervised classification models, Random Forest and SVM, to estimate the likelihood that 

each employee belongs to a high-burnout-risk class. The Random Forest model achieved an accuracy of 88%, and the SVM model 

achieved an accuracy of 86%, demonstrating strong predictive capability in distinguishing higher-risk employees from lower-risk 

employees. The resulting predicted probability is interpreted as an individualised burnout risk score, which can be mapped to action 

categories such as workload redistribution, role clarification, targeted supervisory check-ins, or temporary protection from critical-path 

tasks. In this way, the framework operationalises burnout prediction not only as a detection task but also as an actionable decision-

support signal for leaders. The study therefore offers both a quantitative method for forecasting burnout in start-up environments and a 

practical structure for translating prediction into preventive intervention. 
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1. Introduction 

Employee burnout has become more common in the start-up sector due to its dynamic and high-pressure environment [1][2]. Burnout is 

characterised by emotional exhaustion, diminished performance, and a sense of isolation, adversely impacting individual well-being and 

obstructing organisational productivity and development [3]. 

Previous research on employee burnout in the start-up sector has predominantly on traditional methodologies, including employee 

surveys, interviews, and observations, to identify and address burnout. These studies often address urgent circumstances and may lack 

complete, customised answers for the long term [4]. Research [5] underscores the importance of sustaining a healthy work-life balance 

and obtaining sufficient social support as vital factors in alleviating employee burnout. This technique, while insightful, is ineffective in 

identifying early signs of burnout and delivering prompt solutions. 

Another study [6] explores the use of machine learning algorithms to predict employee burnout. Predictive models are built using work 

behaviour data, well-being surveys, and employee performance records. The results show that machine learning models can accurately 

identify employees at high risk of burnout and provide personalised interventions. This study presents a hybrid artificial intelligence (AI) 

methodology that integrates machine learning and deep learning approaches to forecast and mitigate burnout among employees in the 

start-up sector. This research seeks to utilise predictive algorithms to detect early indicators of burnout, allowing for prompt and focused 

care [7]. This research utilises a hybrid methodology integrating principal component analysis (PCA), random forest, and support vector 

machines (SVM) to predict and mitigate employee burnout in the start-up industry. Principal Component Analysis (PCA) is a technique 

for diminishing data complexity by converting a high-dimensional dataset into a lower-dimensional form. Random forest is an ensemble 

learning method comprising several decision trees [8]. The decision trees are trained with a random subset of the training data [9]. 
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Support Vector Machine (SVM) is a robust machine learning method employed for classification and regression tasks. The Support 

Vector Machine (SVM) algorithm functions by determining the optimal hyperplane that efficiently separates the data into discrete classes 

while optimising the margin of separation [10]. 

The incorporation of AI-driven solutions provides a proactive framework to enhance employee well-being, elevate retention rates, and 

cultivate a better workplace atmosphere [11]. This research aims to anticipate burnout and devise effective intervention measures to 

foster a more supportive and sustainable work environment in the start-up sector [12][13]. 

2. Literature Review  

2.1. Burnout 
Burnout is a state of work exhaustion that occurs when emotional demands and prolonged workload exceed an individual's recovery 

capacity. In the literature, burnout is typically characterised by three main components: emotional exhaustion, cynicism or 

depersonalization toward work, and a decreased sense of personal effectiveness. Burnout is not simply a "momentary tiredness," but a 

recurring, cumulative condition that, if left untreated, can lead to withdrawal from work, intention to resign, and even physical and 

mental health problems [14]. 

Figure 1 shows burnout as a gradual process, not a sudden event. The first stage is High Job Demand (Pressure), a phase where workers 

face heavy workloads, long hours, and the pressure of shifting priorities, which is very common in startup environments. This pressure 

continues and evolves into Chronic Strain, a constant feeling of fatigue and lack of recovery time. At this point, the body and mind are 

"always on," but not yet fully exhausted. The next stage is Emotional Exhaustion, where individuals begin to show psychological signs: 

cynicism, irritability, and loss of motivation. This is crucial because burnout begins to shift from "workload" to "emotional crisis." After 

that, it moves on to Functional Impact. Here, the effects are immediately visible at work: focus decreases, errors increase, and people 

begin to withdraw from team collaboration. Ultimately, this process culminates in High-Risk Burnout, the most serious condition: high 

intentions to leave the job, increased absenteeism/sick leave, and the emergence of health warning signs. 

 

Fig 1. Progression of Burnout Risk: From Workload Pressure to High-Risk State 

2.2. Algorithmic Background 
The proposed Start-Up Burnout Risk Index is built using a pipeline that combines dimensionality reduction and supervised classification. 

The core methods used are Principal Component Analysis (PCA), Random Forest, and Support Vector Machine (SVM). Each plays a 

different role in producing a calibrated, manager-facing burnout risk score. 

 

2.3. Principal Component Analysis (PCA) 
PCA is a linear dimensionality reduction technique that transforms a set of potentially high-dimensional, correlated variables into a set of 

smaller, orthogonal components (principal components) that capture the maximum possible variance in the data. The first few principal 

components typically summarise dominant patterns across multiple predictors, allowing researchers to condense complex psychosocial 

and organisational indicators into a concise representation without needing to retain every original variable. This is useful in burnout 

research because constructs such as workload pressure, role clarity, perceived support, and work-life interference are often interrelated, 

rather than independent. By applying PCA, noisy and partially redundant indicators can be projected into stable latent factors that act as 

core “risk signals.” This supports interpretability (fewer and cleaner composite factors) and model stability (lower risk of 

multicollinearity) [15]. 

 

2.4. Random Forests 
Random Forests is an ensemble classification method that builds multiple decision trees based on bootstrapped data samples and then 

aggregates their predictions, typically by majority voting for classification tasks. This approach is known for its high predictive 

robustness, strong generalisation to previously unseen data, and robustness to nonlinear feature interactions and mixed feature types. It 

also produces a feature importance measure, indicating which variables (or which PCA-derived components) contribute most to 

classifying an instance into the high-risk vs. low-risk categories [16]. 

 

2.5. Support Vector Machine (SVM) 
SVM is a margin-based classifier that attempts to determine the optimal separating boundary (hyperplane) between classes by 

maximising the margin between high-risk and low-risk groups. Using a kernel function, SVM can separate classes even when the 

relationship between predictors and burnout risk is nonlinear. SVM models are widely used as a robust basis for classifying 

psychological risks and work stress because they tend to perform well even with relatively limited sample sizes and high-dimensional 

feature spaces, both of which are common in organisational self-report data. In this study, SVM operates as a comparative model to 
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assess how well a burnout risk index can discriminate employees across risk strata, ensuring that the proposed index is not only 

theoretically grounded but also competitive in terms of discriminatory performance [17]. 

Table 1. Mapping Burnout Focus in Start-Up Environments: Recent Findings, Research Gaps, and Contributions 

Focus Area Recent Findings Remaining Gap This Study 

Burnout in 

start-up work 

High job demands, unstable 

priorities, long/irregular hours, and 

weak managerial support drive 

exhaustion, cynicism, withdrawal, 

and turnover intention in high-

pressure environments such as tech 

and start-ups [18][19]. 

Most burnout studies still analyse 

nurses, teachers, or corporate staff, and 

treat burnout mainly as individual 

stress. There is very little quantitative 

modeling focused specifically on start-

up employees, even though this group 

faces extreme workload instability 

[20][21].  

We model burnout risk specifically 

in start-up employees and frame it as 

an organisational exposure (pressure 

conditions of the job), not just a 

personal feeling. 

How burnout 

is measured 

Newer tools like the Burnout 

Assessment Tool (BAT) define 

burnout as a multidimensional 

syndrome (exhaustion, mental 

distance, cognitive and emotional 

impairment) and show good 

reliability across countries in recent 

validation work [22]. 

Even with these advances, most burnout 

assessments are still self-report at a 

single time point. There is almost no 

operational “burnout risk index” built 

from multiple work indicators 

(workload, hours, clarity, support) that 

can be monitored inside a start-up 

[23][24]. 

We combine many work-condition 

variables, compress them with PCA 

into core stress factors, and turn them 

into a Burnout Risk Index (Low / 

Medium / High). This produces a 

trackable organisational risk score, 

not just a survey score. 

Prediction 

and 

actionability 

Machine learning models like 

Random Forest and other supervised 

classifiers have recently been used 

to predict burnout levels in high-

strain jobs (especially healthcare) 

with good accuracy, and can 

highlight which factors drive 

burnout [25][26].  

But these models are mostly built for 

clinicians, not start-up workers, and 

they usually stop at prediction (“who is 

burned out”) rather than telling 

managers what to do next. Recent work 

calls for burnout to be handled 

structurally (workload redistribution, 

role clarity, recovery time), not just 

treated as an individual problem [27]. 

We train Random Forest / SVM on 

start-up data, generate an individual 

High-Risk probability, convert it to a 

0–100 Burnout Risk Index, and map 

each risk tier to concrete managerial 

actions (e.g. rebalance workload, 

protect high-risk staff). This closes 

the loop from detection → 

intervention. 

3. Method 

This research methodology is a hybrid strategy that combines principal component analysis (PCA) to reduce dimensionality, random 

forest to predict saturation, and support vector machine (SVM) to classify risk. The dataset is taken from several startup companies. PCA 

is used as an initial step to reduce the dimensionality of large and complex data while retaining important information [28]. PCA 

improves the performance of future machine learning algorithms by reducing the number of features. After the data is condensed, the 

Random Forest algorithm is used to generate an initial forecast of employee burnout. The Random Forest algorithm is used because of its 

strong ability to handle imbalanced data and reduce the risk of overfitting [29]. The system generates an accurate predictive model by 

considering various factors, including workload, working hours, and stress levels. Next, a support vector machine (SVM) is used to 

categorise personnel according to their risk level of burnout. Support Vector Machine (SVM) is very successful in analysing data with 

many features and has strong generalisation ability [30]. As a result, SVM can accurately identify high-risk employees. The integration 

of Principal Component Analysis (PCA), Random Forest, and Support Vector Machines (SVM) in this hybrid methodology results in a 

more robust and effective model, which facilitates rapid identification of burnout and timely and appropriate interventions. As in Fig. 2. 

 

 

Fig 2. Research Methodology 
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3.1. Principal Component Analysis (PCA) 

 
3.2. Random Forest 
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3.3. Support Vector Machine (SVM) 

 
4. Result and Discussion 

This study's results and discussion section emphasise the key findings and their implications for forecasting employee burnout in start-up 

companies with a hybrid methodology that integrates principal component analysis (PCA), random forest, and support vector machines 

(SVM). The PCA successfully diminished the data's dimensionality while preserving essential variance, allowing the Random Forest and 

SVM models to forecast burnout risk with precision. The models exhibited significant accuracy and consistency in their predictions, 

highlighting the dependability of this method. This part examines the efficacy of PCA in data reduction, the predictive performance of 

the models, and the practical applications and implications for employee welfare, offering a thorough grasp of the study's results and their 

significance for organisational practices. 

Table 2 delineates the principal parameters employed in this study. Employee well-being was assessed by stress levels, job satisfaction, 

emotional exhaustion, work-life balance, and burnout scores, as detailed in Table 3. Employee performance was assessed using 

performance scores, job completion rates, hours worked, and absenteeism, as illustrated in Table 4. Social support, an aspect of social 

interaction and communication, is quantified through social support scores from peers and superiors, as detailed in Table 5. Table 6 

displays employee demographics and job profiles, encompassing age, gender, marital status, education, job title, length of service, and 

department. This data is essential for comprehending the unique environment of each employee. The work environment, encompassing 

workload, working hours, project quantity, and flexibility, is delineated in Table 7. Table 8 presents data regarding job satisfaction and 

organisational support, encompassing assistance from supervisors, coworkers, recognition of work, career advancement, and training 

possibilities. The correlation between these data is crucial for delivering a thorough understanding of employee situations. Data from all 

tables is used in principle Component Analysis (PCA) to diminish data dimensionality, yielding many principal components (PC1 to 
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PC5) that preserve the majority of the variance in the data. The primary components are subsequently utilised as input for predictive 

models, such as Random Forest and Support Vector Machine (SVM), to assess the likelihood of staff burnout. 

Table 2. Parameter 

Category Parameter 

Employee welfare Stress Level, Job Satisfaction, Emotional Exhaustion, Work Life Balance, Burnout Score 

Employee performance Performance Score, Tasks Completed, Hours Worked, Absenteeism 

Social Interaction and Communication Social Support Score 

Demographics and Job Profile Age, Gender, Marital Status, Education, Job Title, Tenure, Department 

Work environment Workload, Working Hours, Projects Handled, Flexibility 

Job Satisfaction and Organisational 

Support 

Supervisor Support, Peer Support, Job Recognition, Career Development, Training 

Opportunities 

 

Fig. 3 illustrates data across various categories, including sexual orientation, gender, race or ethnicity, the presence of anxiety or 

depressive symptoms, gender identity, educational attainment, handicap status, and age. Each group on the Y-axis corresponds to a 

distinct demographic or situational category, in accordance with the “Demographics and Job Profile” and “Work Environment” 

categories specified in Table 2. The X-axis denotes the values or levels of parameters within these categories, with varying colours 

possibly signifying burnout risk levels or other distinct outcomes.  
 

Fig 3. Group-Wise Distribution of Values by Demographic Categories 

Table 3. Employee Welfare Data 

Employee ID Stress Level Job Satisfaction Emotional Exhaustion Work Life Balance Burnout Score 

1 7 5 6 4 5.5 

2 4 7 3 6 3.5 

3 8 4 7 3 6.5 

4 6 6 5 5 5.0 

5 3 8 2 7 2.5 

Table 4. Employee Performance Data 

Employee ID Performance Score Tasks Completed Hours Worked Absenteeism 

1 85 120 45 2 

2 90 130 40 0 

3 70 110 50 5 

4 80 125 47 1 

5 95 135 42 0 

Table 5. Social Interaction and Communication Data 

Employee ID Social Support Score 

1 3.5 

2 4.5 

3 2.0 

4 3.0 

5 5.0 
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Table 6. Demographic Data and Job Profile 

Employee ID Age Gender Marital Status Education Job Title Tenure Department 

1 30 Male Single Bachelor Software Engineer 3 years IT 

2 28 Female Married Master Data Scientist 2 years Analytics 

3 35 Male Single PhD Researcher 5 years R&D 

4 32 Female Single Bachelor Project Manager 4 years Operations 

5 29 Male Married Bachelor Marketing Lead 3 years Marketing 

Table 7. Work Environment Data 

Employee ID Workload Working Hours Projects Handled Flexibility 

1 5 9 3 Low 

2 4 8 2 Medium 

3 6 10 4 Low 

4 5 9 3 High 

5 4 8 2 Medium 

Table 8. Data on Job Satisfaction and Organisational Support 

Employee ID Supervisor Support Peer Support Job Recognition Career Development Training Opportunities 

1 3 4 3 2 3 

2 5 4 4 4 5 

3 2 3 2 3 2 

4 4 4 4 5 4 

5 5 5 5 5 5 

 
Table 9 presents a summary of the main components identified through principal component analysis (PCA) and their respective roles in 

explaining the variance within the dataset. The first principal component (PC1) captures the largest portion of the variance, making it the 

most significant in terms of data representation. Following PC1, the second principal component (PC2) explains the next largest variance, 

providing additional insight into the dataset's structure. The third principal component (PC3) accounts for the third largest portion of 

variance, further refining the data's dimensionality. Similarly, the fourth principal component (PC4) and the fifth principal component 

(PC5) explain the fourth and fifth largest variances, respectively. Together, these components allow for a comprehensive reduction in 

data dimensionality while preserving the most critical information, facilitating more efficient and accurate predictive modelling. Table 10 

summarises the results of principal component analysis (PCA), showing the amount of data variance explained by each principal 

component. The first principal component (PC1) explains the largest part of the variance, accounting for 30% of the total variance in the 

dataset. This indicates that PC1 captures the most significant pattern or structure in the data. The second principal component (PC2) 

explained an additional 15% of the variance; PC3 accounted for 10% of the variance; PC4 added 8%; and PC5 explained 5%. Overall, 

these five components explained a total of 68% of the variance in the data. 

Table 9. PCA component description 

Main Components Information 

PC1 The first principal component explains most of the variance in the data. 

PC2 The second principal component explains the next largest variance in the data after PC1. 

PC3 The third principal component explains the third largest variance in the data. 

PC4 The fourth principal component explains the fourth largest variance in the data. 

PC5 The fifth principal component explains the fifth largest variance in the data. 

 

Table 10. PCA results 

Main component Variance Explained (%) 

PC1 30 

PC2 15 

PC3 10 

PC4 8 

PC5 5 

Total 68 

 

Figure 4 shows a comparison of the role of the five principal components resulting from PCA analysis (PC1 to PC5) in explaining 

variation in the data. The plot is radial, with each sector representing one component (PC1, PC2, PC3, PC4, PC5), and each sector 

consists of two rings of information. The inner ring (“Main component”) illustrates how strongly that component is a dominant factor or 

core component in the data structure, while the outer ring (“Total”) depicts the total contribution of that component to the overall 

variation explained by PCA. The colour intensity follows a scale on the right side, from blue (low contribution, close to 0) to yellow 

(high contribution, close to 1). Thus, yellow sectors in the inner ring represent components that are highly structurally dominant (e.g., 

PC1), while yellow sectors in the outer ring represent components with a large total contribution to the overall variance (e.g., PC5). 

Concentric circles and a radial scale of 0–80 quantitatively indicate the magnitude of contributions, making it easier to identify which 

components are most influential both locally (dominant) and overall (total variance explained). 
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Fig 4. Radial Contribution Map of Principal Components 

 
Table 11 shows that the Random Forest prediction results achieved an accuracy of 86%, meaning that 86% of the predictions made by 

this model were correct. The model's precision was 84%, meaning that of all the positive predictions made by the model, 84% were true 

positives. The recall model reached 88%, indicating that this model succeeded in identifying 88% of all true positive cases. The F1-Score, 

which is the harmonic average of precision and recall, was recorded at 86%, indicating a good balance between these two metrics. After 

getting initial results from Random Forest, the SVM model was used to further optimise the prediction of employee burnout risk. The 

SVM model also uses principal components generated by PCA as input. The prediction results show that the SVM model achieves an 

accuracy of 88%; the precision of the SVM model is 85%, indicating that of all the positive predictions made by the model, 85% are truly 

positive. The recall of the SVM model was recorded at 90%, indicating the ability of this model to identify the majority of true positive 

cases. The F1-score for the SVM model is 87%, indicating balanced performance between precision and recall. 

Figure 5 displays the performance of two classification models, Random Forest and SVM, using four key evaluation metrics: F1-Score, 

Recall, Precision, and Accuracy. Each cell in the heatmap shows a performance value (in per cent), with a colour scheme representing the 

magnitude of the value; colours closer to blue indicate higher values, while colours closer to yellow indicate lower values. 

 

Table 11. Model Performance 

Metric Random Forest SVM 

Accuracy 88 86 

Precision 85 84 

Recall 90 88 

F1-Score 87 86 

 

 

Fig 5. Performance of Random Forest and SVM Models 

Table 12 presents the results of predictive analysis of employee burnout risk using the Principal Component Analysis (PCA), Random 

Forest, and Support Vector Machine (SVM) models. Each row corresponds to an employee, identified by his or her employee ID, with 

values for the five principal components (PC1 to PC5) derived from PCA. These components represent the reduced dimensionality of the 

original data set while retaining the most significant variance information. The “Burnout Risk” column shows the actual risk of burnout 

for each employee, where 1 represents a high risk and 0 represents a low risk. The “Random Forest Prediction” and “SVM Prediction” 

columns show the predicted burnout risk based on the respective models. For Employee 1, the values of PC1 (2.5) and PC2 (1.0) are high, 

and the actual risk of burnout is 1. The Random Forest and SVM models correctly predict this risk as high. Employee 2 has negative 

values for PC1 (-1.0) and PC2 (-1.5), with an actual burnout risk of 0. Again, both models accurately predict low risk. Employee 3, with 

high PC1 (3.2) and PC2 (2.0) values, also has an actual burnout risk of 1, which is correctly identified by both models. Similarly, 

Employee 4, with negative values for PC1 (-2.1) and PC2 (-1.8), was correctly predicted by both models to have a high risk of burnout. 

Employee 5, who has moderate values for PC1 (1.5) and PC2 (1.3), has an actual burnout risk of 0, and both models accurately predict 

this low risk. Employee 6, with negative PC1 (-0.5) and PC2 (-1.0), also has a low risk of burnout. Employees 7 and 8, both with extreme 

values in PC1 and PC2 (3.8, 2.2, and -2.5, respectively), had a high risk of actual burnout, and both models successfully predicted this 
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risk as high. Overall, the table shows the high accuracy and consistency of the Random Forest and SVM models in predicting the risk of 

employee burnout based on principal components derived from PCA. 

Table 12. Predicting Employee Burnout 

Employee ID PC1 PC2 PC3 PC4 PC5 Burnout Risk Random Forest Prediction SVM Prediction 

1 2.5 1.0 0.5 0.2 0.1 1 1 1 

2 -1.0 -1.5 0.2 0.1 0.0 0 0 0 

3 3.2 2.0 0.6 0.3 0.2 1 1 1 

4 -2.1 -1.8 0.3 0.1 0.1 1 1 1 

5 1.5 1.3 0.4 0.2 0.1 0 0 0 

6 -0.5 -1.0 0.1 0.0 0.0 0 0 0 

7 3.8 2.2 0.7 0.4 0.3 1 1 1 

8 -2.5 -2.0 0.4 0.2 0.1 1 1 1 

 
The Start-Up Burnout Risk Index generates Figure 6, which visualises the dynamics of burnout risk groups over several work periods. 

The red/orange group shows an unstable pattern, with sharp spikes in positive scores (phases of pressure and overdrive to pursue targets) 

followed by drastic declines (exhaustion/crash phases). The green to blue groups, on the other hand, are much flatter and more consistent 

around values closer to zero to one, which means that the working conditions are more stable and controlled. This pattern supports the 

research finding that burnout risk in start-ups is not evenly distributed across everyone but is concentrated in a subset of employees/teams 

that exhibit extreme fluctuations from period to period. Thus, this figure confirms that the research's proposed risk stratification approach, 

which not only measures average burnout but also identifies the most volatile clusters, provides a practical basis for management to 

implement targeted interventions for high-risk groups, rather than simply a general program for all employees. 

 

 

Fig 6. Temporal Volatility of Burnout Risk Across Employee Groups 

Figure 7 displays a probability-intensity map of several employee burnout phases across the observation timeframe. The horizontal axis 

(“Time Period”) indicates the time sequence or observation period (e.g., week 1, or sprint 2). The vertical axis (“Phase”) indicates the 

employee’s state phase, for example, phases 2, 3, 3.1, 3.2, 3.3, 3.4, and -1. Each colored cell represents the probability of the employee 

being in a particular phase at a given timeframe: a lighter colour indicates a high probability of that phase at that time, while a darker area 

indicates a low probability of that phase. In other words, this figure shows not just “how much burnout there is now,” but “which phase 

of burnout is most likely to occur at a given point in time.” This is useful for interpreting escalation: the team starts from a baseline state, 

then enters a moderate stress phase (e.g., phase 2/3), and then moves toward an advanced burnout phase (3.2–3.4) in the final period. 

This provides a temporal overview of when burnout risk begins to intensify and when interventions need to be prioritised. 

Table 12 and Fig. 6 overall demonstrate that the model used in this study effectively captures the temporal dynamics of burnout risk. The 

frequency distribution in the figure likely shows how the risk of burnout varies over time, and the model accurately predicts these risks, 

as reflected in the table. The temporal patterns displayed in the figure can be indicative of periods of stress or higher workload, 

successfully identified by the model, thereby providing reliable fatigue risk predictions in different time scales. This relationship 

emphasises the importance of considering time-based factors when assessing and predicting employee burnout. 
 

 

Fig 7. Temporal Probability of Employee Burnout Phases Over the Observation Period 
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5. Conclusion  

This research shows the effectiveness of a hybrid approach combining principal component analysis (PCA), random forest, and support 

vector machine (SVM) in detecting and predicting the risk of employee burnout in the start-up industry. Through the application of PCA, 

large data dimensions were successfully reduced to five main components (PC1 to PC5), which explained 88% of the total variance. This 

allows for more efficient analysis without losing important information. This research successfully shows the effectiveness of a hybrid 

approach that combines principal component analysis (PCA), random forest, and support vector machine (SVM) in detecting and 

predicting the risk of employee burnout in the start-up industry. Through the application of PCA, the dimensions of big data are reduced 

to five principal components (PC1 to PC5), explaining 88% of the total variance. This allows for more efficient analysis without losing 

important information. Prediction models built using Random Forest and SVM showed excellent performance, with accuracies of 88% 

and 86%, respectively. Both models also show high precision and recall values, ensuring that the predictions produced are consistent 

with the actual label of employee burnout risk. These results confirm that the use of PCA in reducing data dimensionality not only 

reduces complexity but also maintains the essence of significant variance for further analysis. 
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