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Abstract

Start-up organisations operate under fast timelines, lean staffing, and constantly shifting priorities, exposing employees to chronic
workload pressure and emotional strain. Unmanaged burnout in these settings threatens individual well-being, talent retention, and long-
term execution capacity. This study proposes a multivariate burnout risk scoring approach that aims to identify and prioritise employees
at elevated risk before full deterioration occurs, enabling early managerial intervention rather than reactive recovery. The proposed
pipeline integrates principal component analysis (PCA), Random Forest, and Support Vector Machine (SVM). PCA is first applied to
reduce redundancy across workplace indicators, yielding five principal components (PC1-PC5) that together explain 88% of the total
variance in self-reported stress level, job satisfaction, emotional exhaustion, work-life balance, performance, and social interaction. These
components are then used as predictors in two supervised classification models, Random Forest and SVM, to estimate the likelihood that
each employee belongs to a high-burnout-risk class. The Random Forest model achieved an accuracy of 88%, and the SVM model
achieved an accuracy of 86%, demonstrating strong predictive capability in distinguishing higher-risk employees from lower-risk
employees. The resulting predicted probability is interpreted as an individualised burnout risk score, which can be mapped to action
categories such as workload redistribution, role clarification, targeted supervisory check-ins, or temporary protection from critical-path
tasks. In this way, the framework operationalises burnout prediction not only as a detection task but also as an actionable decision-
support signal for leaders. The study therefore offers both a quantitative method for forecasting burnout in start-up environments and a
practical structure for translating prediction into preventive intervention.
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1. Introduction

Employee burnout has become more common in the start-up sector due to its dynamic and high-pressure environment [1][2]. Burnout is
characterised by emotional exhaustion, diminished performance, and a sense of isolation, adversely impacting individual well-being and
obstructing organisational productivity and development [3].

Previous research on employee burnout in the start-up sector has predominantly on traditional methodologies, including employee
surveys, interviews, and observations, to identify and address burnout. These studies often address urgent circumstances and may lack
complete, customised answers for the long term [4]. Research [5] underscores the importance of sustaining a healthy work-life balance
and obtaining sufficient social support as vital factors in alleviating employee burnout. This technique, while insightful, is ineffective in
identifying early signs of burnout and delivering prompt solutions.

Another study [6] explores the use of machine learning algorithms to predict employee burnout. Predictive models are built using work
behaviour data, well-being surveys, and employee performance records. The results show that machine learning models can accurately
identify employees at high risk of burnout and provide personalised interventions. This study presents a hybrid artificial intelligence (AI)
methodology that integrates machine learning and deep learning approaches to forecast and mitigate burnout among employees in the
start-up sector. This research seeks to utilise predictive algorithms to detect early indicators of burnout, allowing for prompt and focused
care [7]. This research utilises a hybrid methodology integrating principal component analysis (PCA), random forest, and support vector
machines (SVM) to predict and mitigate employee burnout in the start-up industry. Principal Component Analysis (PCA) is a technique
for diminishing data complexity by converting a high-dimensional dataset into a lower-dimensional form. Random forest is an ensemble
learning method comprising several decision trees [8]. The decision trees are trained with a random subset of the training data [9].

@ @ Copyright © Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.


https://creativecommons.org/licenses/by/4.0/
mailto:marischaelveny@usu.ac.id

International Journal of Engineering, Science and Information Technology, 5 (4), 2025, pp. 506-516 507

Support Vector Machine (SVM) is a robust machine learning method employed for classification and regression tasks. The Support
Vector Machine (SVM) algorithm functions by determining the optimal hyperplane that efficiently separates the data into discrete classes
while optimising the margin of separation [10].

The incorporation of Al-driven solutions provides a proactive framework to enhance employee well-being, elevate retention rates, and
cultivate a better workplace atmosphere [11]. This research aims to anticipate burnout and devise effective intervention measures to
foster a more supportive and sustainable work environment in the start-up sector [12][13].

2. Literature Review

2.1. Burnout

Burnout is a state of work exhaustion that occurs when emotional demands and prolonged workload exceed an individual's recovery
capacity. In the literature, burnout is typically characterised by three main components: emotional exhaustion, cynicism or
depersonalization toward work, and a decreased sense of personal effectiveness. Burnout is not simply a "momentary tiredness," but a
recurring, cumulative condition that, if left untreated, can lead to withdrawal from work, intention to resign, and even physical and
mental health problems [14].

Figure 1 shows burnout as a gradual process, not a sudden event. The first stage is High Job Demand (Pressure), a phase where workers
face heavy workloads, long hours, and the pressure of shifting priorities, which is very common in startup environments. This pressure
continues and evolves into Chronic Strain, a constant feeling of fatigue and lack of recovery time. At this point, the body and mind are
"always on," but not yet fully exhausted. The next stage is Emotional Exhaustion, where individuals begin to show psychological signs:
cynicism, irritability, and loss of motivation. This is crucial because burnout begins to shift from "workload" to "emotional crisis." After
that, it moves on to Functional Impact. Here, the effects are immediately visible at work: focus decreases, errors increase, and people
begin to withdraw from team collaboration. Ultimately, this process culminates in High-Risk Burnout, the most serious condition: high
intentions to leave the job, increased absenteeism/sick leave, and the emergence of health warning signs.

PROGRESSION OF BURNOUT RISK: FROM WORKLOAD
PRESSURE TO HIGH-RISK STATE
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Fig 1. Progression of Burnout Risk: From Workload Pressure to High-Risk State

2.2. Algorithmic Background

The proposed Start-Up Burnout Risk Index is built using a pipeline that combines dimensionality reduction and supervised classification.
The core methods used are Principal Component Analysis (PCA), Random Forest, and Support Vector Machine (SVM). Each plays a
different role in producing a calibrated, manager-facing burnout risk score.

2.3. Principal Component Analysis (PCA)

PCA is a linear dimensionality reduction technique that transforms a set of potentially high-dimensional, correlated variables into a set of
smaller, orthogonal components (principal components) that capture the maximum possible variance in the data. The first few principal
components typically summarise dominant patterns across multiple predictors, allowing researchers to condense complex psychosocial
and organisational indicators into a concise representation without needing to retain every original variable. This is useful in burnout
research because constructs such as workload pressure, role clarity, perceived support, and work-life interference are often interrelated,
rather than independent. By applying PCA, noisy and partially redundant indicators can be projected into stable latent factors that act as
core “risk signals.” This supports interpretability (fewer and cleaner composite factors) and model stability (lower risk of
multicollinearity) [15].

2.4. Random Forests

Random Forests is an ensemble classification method that builds multiple decision trees based on bootstrapped data samples and then
aggregates their predictions, typically by majority voting for classification tasks. This approach is known for its high predictive
robustness, strong generalisation to previously unseen data, and robustness to nonlinear feature interactions and mixed feature types. It
also produces a feature importance measure, indicating which variables (or which PCA-derived components) contribute most to
classifying an instance into the high-risk vs. low-risk categories [16].

2.5. Support Vector Machine (SVM)

SVM is a margin-based classifier that attempts to determine the optimal separating boundary (hyperplane) between classes by
maximising the margin between high-risk and low-risk groups. Using a kernel function, SVM can separate classes even when the
relationship between predictors and burnout risk is nonlinear. SVM models are widely used as a robust basis for classifying
psychological risks and work stress because they tend to perform well even with relatively limited sample sizes and high-dimensional
feature spaces, both of which are common in organisational self-report data. In this study, SVM operates as a comparative model to
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assess how well a burnout risk index can discriminate employees across risk strata, ensuring that the proposed index is not only
theoretically grounded but also competitive in terms of discriminatory performance [17].

Table 1. Mapping Burnout Focus in Start-Up Environments: Recent Findings, Research Gaps, and Contributions

Focus Area Recent Findings Remaining Gap This Study
High job demands, unstable Most burnout studies still analyse
S . nurses, teachers, or corporate staff, and . .
priorities, long/irregular hours, and . S We model burnout risk specifically
weak managerial support drive treat burnout mainly as individual in start-up employees and frame it as
Burnout in stress. There is very little quantitative

start-up work

exhaustion, cynicism, withdrawal,
and turnover intention in high-
pressure environments such as tech
and start-ups [18][19].

modeling focused specifically on start-
up employees, even though this group
faces extreme workload instability
[20][21].

an organisational exposure (pressure
conditions of the job), not just a
personal feeling.

How burnout
is measured

Newer tools like the Burnout
Assessment Tool (BAT) define
burnout as a multidimensional
syndrome  (exhaustion,  mental
distance, cognitive and emotional
impairment) and show good
reliability across countries in recent
validation work [22].

Even with these advances, most burnout
assessments are still self-report at a
single time point. There is almost no
operational “burnout risk index” built
from  multiple work indicators
(workload, hours, clarity, support) that
can be monitored inside a start-up
[23][24].

We combine many work-condition
variables, compress them with PCA
into core stress factors, and turn them
into a Burnout Risk Index (Low /
Medium / High). This produces a
trackable organisational risk score,
not just a survey score.

Machine learning models like
Random Forest and other supervised
classifiers have recently been used

But these models are mostly built for
clinicians, not start-up workers, and
they usually stop at prediction (“who is

We train Random Forest / SVM on
start-up data, generate an individual
High-Risk probability, convert it to a

Prediction . . burned out”) rather than telling 0-100 Burnout Risk Index, and map
to predict burnout levels in high- S .

and . . managers what to do next. Recent work each risk tier to concrete managerial

. - strain jobs (especially healthcare) .

actionability . calls for burmout to be handled actions (e.g. rebalance workload,

with good accuracy, and can . . . .
o . . structurally (workload redistribution, protect high-risk staff). This closes
highlight which factors drive . . . .
burnout [25][26] role clarity, recovery time), not just the loop from detection —
’ treated as an individual problem [27]. intervention.
3. Method

This research methodology is a hybrid strategy that combines principal component analysis (PCA) to reduce dimensionality, random
forest to predict saturation, and support vector machine (SVM) to classify risk. The dataset is taken from several startup companies. PCA
is used as an initial step to reduce the dimensionality of large and complex data while retaining important information [28]. PCA
improves the performance of future machine learning algorithms by reducing the number of features. After the data is condensed, the
Random Forest algorithm is used to generate an initial forecast of employee burnout. The Random Forest algorithm is used because of its
strong ability to handle imbalanced data and reduce the risk of overfitting [29]. The system generates an accurate predictive model by
considering various factors, including workload, working hours, and stress levels. Next, a support vector machine (SVM) is used to
categorise personnel according to their risk level of burnout. Support Vector Machine (SVM) is very successful in analysing data with
many features and has strong generalisation ability [30]. As a result, SVM can accurately identify high-risk employees. The integration
of Principal Component Analysis (PCA), Random Forest, and Support Vector Machines (SVM) in this hybrid methodology results in a
more robust and effective model, which facilitates rapid identification of burnout and timely and appropriate interventions. As in Fig. 2.
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Fig 2. Research Methodology
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3.1. Principal Component Analysis (PCA)

a.

Data Normalization
n
flx) = SEQH(Z oC; yi(x[—.X) +b) (1
i=1
Normalize each feature value in the dataset by adjusting it to achieve a mean of 0 and a standard deviation of 1. Normalizes the scales
of diverse features to guarantee uniform contribution in the PCA analysis [31].
Covariance Matrix
= —— ()X’ @
n-1

The covariance matrix (£) quantifies the degree to which two properties vary in relation to each other. Every entry in the covariance
matrix denotes the covariance between two features. To comprehend the linear association between features in a dataset and identify
correlations between features [32].

Eigenvalue and Eigenvector

v = Av (3)

The provided equation is utilized to determine the eigenvalue (1) and eigenvector (v) of the covariance matrix (). An eigenvector
indicates the orientation of the primary components, while an eigenvalue quantifies the magnitude of the variance along that orientation.
Determine the direction in which the data exhibits the highest degree of variance. The eigenvector associated with the greatest
eigenvalue is designated as the first principal component, and this pattern continues for subsequent components [33].

3.2. Random Forest

Main components and formulas involved in the Random Forest algorithm [34].

a.

Data Selection (Bootstrap Sampling)
To build each tree in the forest, training data of size n samples are randomly selected with replacement (bootstrapping). Each tree is
trained on different bootstrap samples.

Dy = (x;,y)i=1 “

Formation of a Decision Tree (Decision Tree)

Entropy
For classification problems, entropy H is used to measure the uncertainty or impurity of a node

k
H(D) = — Z pf\logz(pi) (3)
{i=1}

Information Gain (IG)
Information Gain measures the reduction in uncertainty after splitting data on a particular feature A

IG(D,A)=H({D) - T¥ vevalues(A) %\_‘H(DV)

Gini Impurity (0)
An alternative to entropy is Gini impurity to measure the impurity of a node.

k
6D)=1- ) p?
{i=1} (7)

Voting or Averaging
Majority Voting for Classification
For each sample, each tree p, gives its prediction yt. The final prediction 5 is the class with the most votes.

¥ = mode{h,(x)}t=1 ®

Average for Regression
For regression, the final prediction ; is the average of all tree predictions.

T
o1
Y=z z heco ©)

{r—1}
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3.3. Support Vector Machine (SVM)

The optimization problem can be formulated as follows [35]:

a. Hyperplane

wx+b=0 (10)

w 1s a weight vector
x 1s a feature vector
b is bias or intercept

b. Margin

Margin is the distance between the hyperplane and the closest data points of both classes. To maximize margin, we must minimize
[|w||- This objective function can be written as [36]:

1
Minim['ze§||w||2 (11)

c. Constraint
To ensure that the data points lie on the correct side of the margin, we add constraints [37]:

(12)

A yiwx+b)=1

y, 1s a class label for a data pointy,

y; — 1 for the positive class, and for the positive class, and , = 1 for the negative class
d. Lagrangian

Using the Lagrangian method, we form the Lagrangian function by introducing Lagrange multipliers o; [38]:

n
1 2
Lw,b,e) = > | Iw] —Z i [yi(w.x; +b) — 1] 13)

e. Dual Problem
By changing to the dual form of the Lagrangian function, we get [39]:

n n n
o 1
Maximize Z 1 o¢— zzz 1 o0 vy (. %) (14)
i1

i=1i=1

f.  Constraints of Dual Problem

n

Z ay; = 0 (15)

fi—1}

g. Decision Function
After solving the optimization problem, the decision function to classify the new data point x is [40]:

fx) = sign(z of; ¥; (x;.x) + b) (16)

i=1
4. Result and Discussion

This study's results and discussion section emphasise the key findings and their implications for forecasting employee burnout in start-up
companies with a hybrid methodology that integrates principal component analysis (PCA), random forest, and support vector machines
(SVM). The PCA successfully diminished the data's dimensionality while preserving essential variance, allowing the Random Forest and
SVM models to forecast burnout risk with precision. The models exhibited significant accuracy and consistency in their predictions,
highlighting the dependability of this method. This part examines the efficacy of PCA in data reduction, the predictive performance of
the models, and the practical applications and implications for employee welfare, offering a thorough grasp of the study's results and their
significance for organisational practices.

Table 2 delineates the principal parameters employed in this study. Employee well-being was assessed by stress levels, job satisfaction,
emotional exhaustion, work-life balance, and burnout scores, as detailed in Table 3. Employee performance was assessed using
performance scores, job completion rates, hours worked, and absenteeism, as illustrated in Table 4. Social support, an aspect of social
interaction and communication, is quantified through social support scores from peers and superiors, as detailed in Table 5. Table 6
displays employee demographics and job profiles, encompassing age, gender, marital status, education, job title, length of service, and
department. This data is essential for comprehending the unique environment of each employee. The work environment, encompassing
workload, working hours, project quantity, and flexibility, is delineated in Table 7. Table 8 presents data regarding job satisfaction and
organisational support, encompassing assistance from supervisors, coworkers, recognition of work, career advancement, and training
possibilities. The correlation between these data is crucial for delivering a thorough understanding of employee situations. Data from all
tables is used in principle Component Analysis (PCA) to diminish data dimensionality, yielding many principal components (PC1 to
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PC5) that preserve the majority of the variance in the data. The primary components are subsequently utilised as input for predictive
models, such as Random Forest and Support Vector Machine (SVM), to assess the likelihood of staff burnout.

Table 2. Parameter

Category Parameter

Employee welfare Stress Level, Job Satisfaction, Emotional Exhaustion, Work Life Balance, Burnout Score
Employee performance Performance Score, Tasks Completed, Hours Worked, Absenteeism

Social Interaction and Communication Social Support Score

Demographics and Job Profile Age, Gender, Marital Status, Education, Job Title, Tenure, Department

Work environment Workload, Working Hours, Projects Handled, Flexibility

Job Satisfaction and Organisational Supervisor Support, Peer Support, Job Recognition, Career Development, Training
Support Opportunities

Fig. 3 illustrates data across various categories, including sexual orientation, gender, race or ethnicity, the presence of anxiety or
depressive symptoms, gender identity, educational attainment, handicap status, and age. Each group on the Y-axis corresponds to a
distinct demographic or situational category, in accordance with the “Demographics and Job Profile” and “Work Environment”
categories specified in Table 2. The X-axis denotes the values or levels of parameters within these categories, with varying colours
possibly signifying burnout risk levels or other distinct outcomes.

Group Categories
By Age
By Disability status
—e— By Educat
By Gender identity
—— By Presence o f Symptoms of Anxiety/Depression
—e— By Race/Hispanic ethnicity
~— By Sex
—— By Sexual orientation
By State
National Estimate

Metric Value

Fig 3. Group-Wise Distribution of Values by Demographic Categories

Table 3. Employee Welfare Data

Employee ID  Stress Level Job Satisfaction Emotional Exhaustion Work Life Balance Burnout Score

1 7 5 6 4 5.5
2 4 7 3 6 3.5
3 8 4 7 3 6.5
4 6 6 5 5 5.0
5 3 8 2 7 2.5

Table 4. Employee Performance Data

Employee ID  Performance Score Tasks Completed Hours Worked Absenteeism

1 85 120 45 2
2 90 130 40 0
3 70 110 50 5
4 80 125 47 1
5 95 135 42 0

Table 5. Social Interaction and Communication Data

Employee ID  Social Support Score

1 35
2 4.5
3 2.0
4 3.0
5 5.0
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Table 6. Demographic Data and Job Profile

Employee ID Age Gender Marital Status Education Job Title Tenure Department
1 30 Male Single Bachelor  Software Engineer 3 years IT
2 28  Female Married Master Data Scientist 2 years Analytics
3 35 Male Single PhD Researcher 5 years R&D
4 32  Female Single Bachelor Project Manager 4 years  Operations
5 29 Male Married Bachelor Marketing Lead 3 years  Marketing

Table 7. Work Environment Data

Employee ID  Workload Working Hours Projects Handled Flexibility

1 5 9 3 Low
2 4 8 2 Medium
3 6 10 4 Low
4 5 9 3 High
5 4 8 2 Medium

Table 8. Data on Job Satisfaction and Organisational Support

Employee ID  Supervisor Support Peer Support Job Recognition Career Development Training Opportunities

1 3 4 3 2 3
2 5 4 4 4 5
3 2 3 2 3 2
4 4 4 4 5 4
5 5 5 5 5 5

Table 9 presents a summary of the main components identified through principal component analysis (PCA) and their respective roles in
explaining the variance within the dataset. The first principal component (PC1) captures the largest portion of the variance, making it the
most significant in terms of data representation. Following PC1, the second principal component (PC2) explains the next largest variance,
providing additional insight into the dataset's structure. The third principal component (PC3) accounts for the third largest portion of
variance, further refining the data's dimensionality. Similarly, the fourth principal component (PC4) and the fifth principal component
(PC5) explain the fourth and fifth largest variances, respectively. Together, these components allow for a comprehensive reduction in
data dimensionality while preserving the most critical information, facilitating more efficient and accurate predictive modelling. Table 10
summarises the results of principal component analysis (PCA), showing the amount of data variance explained by each principal
component. The first principal component (PC1) explains the largest part of the variance, accounting for 30% of the total variance in the
dataset. This indicates that PC1 captures the most significant pattern or structure in the data. The second principal component (PC2)
explained an additional 15% of the variance; PC3 accounted for 10% of the variance; PC4 added 8%; and PC5 explained 5%. Overall,
these five components explained a total of 68% of the variance in the data.
Table 9. PCA component description

Main Components Information

PC1 The first principal component explains most of the variance in the data.

PC2 The second principal component explains the next largest variance in the data after PC1.
PC3 The third principal component explains the third largest variance in the data.

PC4 The fourth principal component explains the fourth largest variance in the data.

PC5 The fifth principal component explains the fifth largest variance in the data.

Table 10. PCA results

Main component Variance Explained (%)
PC1 30
PC2 15
PC3 10
PC4 8
PC5 5
Total 68

Figure 4 shows a comparison of the role of the five principal components resulting from PCA analysis (PC1 to PCS) in explaining
variation in the data. The plot is radial, with each sector representing one component (PC1, PC2, PC3, PC4, PC5), and each sector
consists of two rings of information. The inner ring (“Main component”) illustrates how strongly that component is a dominant factor or
core component in the data structure, while the outer ring (“Total”) depicts the total contribution of that component to the overall
variation explained by PCA. The colour intensity follows a scale on the right side, from blue (low contribution, close to 0) to yellow
(high contribution, close to 1). Thus, yellow sectors in the inner ring represent components that are highly structurally dominant (e.g.,
PC1), while yellow sectors in the outer ring represent components with a large total contribution to the overall variance (e.g., PCS).
Concentric circles and a radial scale of 0—80 quantitatively indicate the magnitude of contributions, making it easier to identify which
components are most influential both locally (dominant) and overall (total variance explained).
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Fig 4. Radial Contribution Map of Principal Components

Table 11 shows that the Random Forest prediction results achieved an accuracy of 86%, meaning that 86% of the predictions made by
this model were correct. The model's precision was 84%, meaning that of all the positive predictions made by the model, 84% were true
positives. The recall model reached 88%, indicating that this model succeeded in identifying 88% of all true positive cases. The F1-Score,
which is the harmonic average of precision and recall, was recorded at 86%, indicating a good balance between these two metrics. After
getting initial results from Random Forest, the SVM model was used to further optimise the prediction of employee burnout risk. The
SVM model also uses principal components generated by PCA as input. The prediction results show that the SVM model achieves an
accuracy of 88%; the precision of the SVM model is 85%, indicating that of all the positive predictions made by the model, 85% are truly
positive. The recall of the SVM model was recorded at 90%, indicating the ability of this model to identify the majority of true positive
cases. The F1-score for the SVM model is 87%, indicating balanced performance between precision and recall.

Figure 5 displays the performance of two classification models, Random Forest and SVM, using four key evaluation metrics: F1-Score,
Recall, Precision, and Accuracy. Each cell in the heatmap shows a performance value (in per cent), with a colour scheme representing the
magnitude of the value; colours closer to blue indicate higher values, while colours closer to yellow indicate lower values.

Table 11. Model Performance

Metric Random Forest SVM

Accuracy 88 86
Precision 85 84

Recall 90 88
F1-Score 87 86

90.00
F1-Score
88,80
Recall
87.80
Precision
86,40
Accuracy 88

8520
LB Random Forest

84,00

Fig 5. Performance of Random Forest and SVM Models

Table 12 presents the results of predictive analysis of employee burnout risk using the Principal Component Analysis (PCA), Random
Forest, and Support Vector Machine (SVM) models. Each row corresponds to an employee, identified by his or her employee ID, with
values for the five principal components (PC1 to PCS) derived from PCA. These components represent the reduced dimensionality of the
original data set while retaining the most significant variance information. The “Burnout Risk” column shows the actual risk of burnout
for each employee, where 1 represents a high risk and 0 represents a low risk. The “Random Forest Prediction” and “SVM Prediction”
columns show the predicted burnout risk based on the respective models. For Employee 1, the values of PC1 (2.5) and PC2 (1.0) are high,
and the actual risk of burnout is 1. The Random Forest and SVM models correctly predict this risk as high. Employee 2 has negative
values for PC1 (-1.0) and PC2 (-1.5), with an actual burnout risk of 0. Again, both models accurately predict low risk. Employee 3, with
high PC1 (3.2) and PC2 (2.0) values, also has an actual burnout risk of 1, which is correctly identified by both models. Similarly,
Employee 4, with negative values for PC1 (-2.1) and PC2 (-1.8), was correctly predicted by both models to have a high risk of burnout.
Employee 5, who has moderate values for PC1 (1.5) and PC2 (1.3), has an actual burnout risk of 0, and both models accurately predict
this low risk. Employee 6, with negative PC1 (-0.5) and PC2 (-1.0), also has a low risk of burnout. Employees 7 and 8, both with extreme
values in PC1 and PC2 (3.8, 2.2, and -2.5, respectively), had a high risk of actual burnout, and both models successfully predicted this
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risk as high. Overall, the table shows the high accuracy and consistency of the Random Forest and SVM models in predicting the risk of
employee burnout based on principal components derived from PCA.
Table 12. Predicting Employee Burnout

EmployeeID PC1 PC2 PC3 PC4 PC5 BurnoutRisk Random Forest Prediction SVM Prediction
1 2.5 1.0 0.5 0.2 0.1 1 1 1
-1.0 -1.5 02 0.1 0.0
3.2 2.0 0.6 0.3 0.2
21 -1.8 03 0.1 0.1
1.5 1.3 0.4 0.2 0.1
-0.5 -1.0 0.1 0.0 0.0
3.8 2.2 0.7 0.4 0.3
25 20 04 0.2 0.1
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The Start-Up Burnout Risk Index generates Figure 6, which visualises the dynamics of burnout risk groups over several work periods.
The red/orange group shows an unstable pattern, with sharp spikes in positive scores (phases of pressure and overdrive to pursue targets)
followed by drastic declines (exhaustion/crash phases). The green to blue groups, on the other hand, are much flatter and more consistent
around values closer to zero to one, which means that the working conditions are more stable and controlled. This pattern supports the
research finding that burnout risk in start-ups is not evenly distributed across everyone but is concentrated in a subset of employees/teams
that exhibit extreme fluctuations from period to period. Thus, this figure confirms that the research's proposed risk stratification approach
which not only measures average burnout but also identifies the most volatile clusters, provides a practical basis for management to
implement targeted interventions for high-risk groups, rather than simply a general program for all employees.

]
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Fig 6. Temporal Volatility of Burnout Risk Across Employee Groups

Figure 7 displays a probability-intensity map of several employee burnout phases across the observation timeframe. The horizontal axis
(“Time Period”) indicates the time sequence or observation period (e.g., week 1, or sprint 2). The vertical axis (“Phase”) indicates the
employee’s state phase, for example, phases 2, 3, 3.1, 3.2, 3.3, 3.4, and -1. Each colored cell represents the probability of the employee
being in a particular phase at a given timeframe: a lighter colour indicates a high probability of that phase at that time, while a darker area
indicates a low probability of that phase. In other words, this figure shows not just “how much burnout there is now,” but “which phase
of burnout is most likely to occur at a given point in time.” This is useful for interpreting escalation: the team starts from a baseline state,
then enters a moderate stress phase (e.g., phase 2/3), and then moves toward an advanced burnout phase (3.2-3.4) in the final period.
This provides a temporal overview of when burnout risk begins to intensify and when interventions need to be prioritised.

Table 12 and Fig. 6 overall demonstrate that the model used in this study effectively captures the temporal dynamics of burnout risk. The
frequency distribution in the figure likely shows how the risk of burnout varies over time, and the model accurately predicts these risks,
as reflected in the table. The temporal patterns displayed in the figure can be indicative of periods of stress or higher workload,
successfully identified by the model, thereby providing reliable fatigue risk predictions in different time scales. This relationship
emphasises the importance of considering time-based factors when assessing and predicting employee burnout.
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Fig 7. Temporal Probability of Employee Burnout Phases Over the Observation Period
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5. Conclusion

This research shows the effectiveness of a hybrid approach combining principal component analysis (PCA), random forest, and support
vector machine (SVM) in detecting and predicting the risk of employee burnout in the start-up industry. Through the application of PCA,
large data dimensions were successfully reduced to five main components (PC1 to PCS), which explained 88% of the total variance. This
allows for more efficient analysis without losing important information. This research successfully shows the effectiveness of a hybrid
approach that combines principal component analysis (PCA), random forest, and support vector machine (SVM) in detecting and
predicting the risk of employee burnout in the start-up industry. Through the application of PCA, the dimensions of big data are reduced
to five principal components (PC1 to PC5), explaining 88% of the total variance. This allows for more efficient analysis without losing
important information. Prediction models built using Random Forest and SVM showed excellent performance, with accuracies of 88%
and 86%, respectively. Both models also show high precision and recall values, ensuring that the predictions produced are consistent
with the actual label of employee burnout risk. These results confirm that the use of PCA in reducing data dimensionality not only
reduces complexity but also maintains the essence of significant variance for further analysis.
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