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Abstract

Multiclass imbalanced classification remains a significant challenge in machine learning, particularly when datasets exhibit high Imbalance
Ratios (IR) and overlapping feature distributions. Traditional classifiers often fail to accurately represent minority classes, leading to biased
models and suboptimal performance. This study proposes a hybrid approach combining Generalization potential and learning Difficulty-
based Hybrid Sampling (GDHS) as a preprocessing technique with Gradient Boosting Decision Tree (GBDT) as the classifier. GDHS
enhances minority class representation through intelligent oversampling while cleaning majority classes to reduce noise and class overlap.
GBDT s then applied to the resampled dataset, leveraging its adaptive learning capabilities. The performance of the proposed
GDHS+GBDT model was evaluated across six benchmark datasets with varying IR levels, using metrics such as Matthews Correlation
Coefficient (MCC), Precision, Recall, and F-Value. Results show that GDHS+GBDT consistently outperforms other methods, including
SMOTE+XGBoost, CatBoost, and Select-SMOTE+LightGBM, particularly on high-IR datasets like Red Wine Quality (IR = 68.10) and
Page-Blocks (IR = 188.72). The method improves classification performance, especially in detecting minority classes, while maintaining
high accuracy.

Keywords: Multiclass Imbalanced Classification, Machine Learning, Hybrid Sampling, GDHS, GBDT.

1. Introduction

Imbalanced data classification is an increasingly prevalent challenge across various application domains such as fraud detection [1],
medical diagnosis [2], security systems [3], and pattern recognition [4]. In the context of multiclass data, the challenge becomes even more
complex due to the imbalance between two classes [5] and among multiple overlapping majority and minority classes, each with varying
degrees of sample representation [6]. In multiclass imbalanced classification, the difficulty lies in the fact that a model must learn to
differentiate not just between a majority and a single minority class (as in binary imbalance) but among several classes [7], which may
have drastically different numbers of instances [8]. This situation often leads to what is known as the "multiclass imbalance problem,"”
where: One or more classes dominate the training process (majority classes)[9], Several other courses are severely underrepresented
(minority classes), Some classes may be borderline[10] or overlapping [11], leading to ambiguity in decision boundaries [12].

Traditional classification algorithms perform poorly under these conditions because they optimize for overall accuracy [13]. This can be
misleading: achieving high accuracy by correctly classifying majority class samples while consistently misclassifying minority ones [14].
Furthermore, the inter-class imbalance (i.e., the imbalance between any pair of classes) and intra-class variability (variance within the same
class) introduce further difficulties, especially when classes have overlapping feature distributions [15].

One widely used approach to improve classification performance is the Gradient Boosting Decision Tree (GBDT). GBDT is known for its
ability to build strong ensembles of decision trees gradually and adaptively. However, recent studies show that while GBDT performs well
on balanced datasets, it remains vulnerable to distribution bias when applied to imbalanced data, especially in multiclass settings. Several
studies have proposed modifications to the loss function, such as Focal Loss, Class Balanced Loss, and Asymmetric Loss, which aim to
penalize misclassification of minority classes more heavily. While these methods improve sensitivity toward minority classes, they rely
heavily on the original data distribution [16].

As an alternative algorithm-level approach, data-level resampling methods offer distinct advantages because they do not alter the model
architecture and can be applied across various learning algorithms [17]. In this domain, Yan et al developed the GDHS (Generalization
potential and learning Difficulty-based Hybrid Sampling) method. [18] provides a significant contribution. GDHS is a hybrid sampling
technique designed explicitly for multiclass imbalanced data, combining two main strategies: intelligent oversampling based on learning
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difficulty and the generalization potential of minority samples, and majority class cleaning using three different techniques to handle class
overlaps. The study demonstrated that GDHS[18] consistently outperforms 12 state-of-the-art methods, such as SMOTE, MDO, and
SHSampler, in terms of mMGM (mean geometric mean) and MAUC (multiclass area under the curve) metrics.

Compared to other methods like Local density-based adaptive sampling[19], which also adopt a hybrid approach, GDHS offers
improvements by integrating safe sampling and generalization-aware weighting, considering sample density and heterogeneous distribution
in the synthetic space. Meanwhile, methods like MC-RBO[20] and MC-CCR[21] focus on potential and energy-based oversampling
functions but tend to neglect majority class cleaning, which often plays a critical role in classification inaccuracy.

In this context, integrating GDHS and GBDT[22] represents a promising synergistic strategy. GDHS prepares a more representative and
clean dataset through intelligent sampling-based preprocessing. At the same time, GBD, modified with a loss function adaptive to minority
classes, can optimally leverage this data during training. Combining data-level preprocessing and algorithm-level learning strengths, this
approach is expected to enhance accuracy, Recall, and AUC for minority classes without sacrificing the model's overall performance.
The urgency of this integration becomes even more critical in real-world applications that require high sensitivity to minority classes, such
as rare disease detection or financial fraud analysis. Therefore, this study proposes the integration of GDHS as a preprocessing stage and
GBDT as the primary classifier, and compares it against other baselines such as SMOTE+XGBoost[23], CatBoost[24], and Select-
SMOTE+LightGBM][25] to evaluate the effectiveness of the proposed hybrid model.

2. Method

2.1. Generalization Potential and Learning Difficulty-Based Hybrid Sampling
The pseudocode of GDHS is as follows.

Input: Training set [, selection weight w, number of neighbors &
Output: Balanced dataset D’

1. Calculate the mean value m of all class sizes in the dataset D using Eq. (1)
2 for each minority class c_i in X_min do

3 for each sample x in c_i do

4. Compute safe_factor(x) using Eq. (2)

5. Compute gen_factor(x) using Eq. (3)

6 Compute select_weight (x) using Eq. (4)

7 end for

8 syn_num + m - |ec_il

9 while syn_num > 0 do

10. Generate a synthetic sample based on random seed and weight
11. syn_num + syn_num - 1

12. end while

13. Add class c_i (including synthetic samples) to D’

14. end for

15. // Cleaning Strategy 1: GDHS_LC
16. for each majority class c_j in X_maj do

17. for each sample x in c_j do

18. Compute IMPdeg(x) using Eq. (5)
19. Identify S_overmin using Eq. (6)
20. Identify S_overmaj using Eq. (7)
21. end for

22, Add retained samples of c_j to D’
23. end for

24. // Cleaning Strategy 2: GDHS_GL
25. Compute IMPdeg for all majority samples using Eq. (5)
26. for each majority class c_j in X_maj do

27. for each sample x in c_j do

28. Identify S_Govermin using Eq. (8)

29. end for

30. delnum + |c_jl - m

31. if |S_Govermin| delnum then

32. Remove delnum samples from S_Govermin
33. else

34. Identify S_overmaj using Eq. (7)

35. Remove remaining (delnum - |S_Govermin|) from S_overmaj
36. end if

37. Add retained samples of c_j to D’

38. end for

39. // Cleaning Strategy 3: GDHS_BA
40. for each majority class c¢_j in X_maj do

41. for each sample x in c_j do

42. Compute IMPdeg(x) using Eq. (5)

43. Identify S_overmin using Eq. (6)

a4. end for

45. delnum + |c_jl - m

46. if |S_overmin| >= delnum then

a7 . Remove delnum samples from S_overmin
48. else

49. Identify S_overmaj using Eq. (7)

50. Remove (delnum - |S_overmin|) samples from S_overmaj
51. end if

B2. Add retained samples of c_j to D’

53. end for

54. Return the final balanced dataset D’

The provided pseudocode outlines the GDHS, designed to address class imbalance in supervised learning tasks. The algorithm performs
oversampling for minority classes and various cleaning (undersampling) strategies for majority classes to yield a balanced dataset D".
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The process begins by calculating the mean value m of all class sizes in the original dataset D using Equation 1.

in=1lci|

m==S @
Where ci denotes the set of samples of the i th class of the imbalanced dataset D
For each minority class ci, the algorithm iterates over its samples and computes three key metrics: safe_factor(x) using Equation (2),
gen_factor(x) using Equation (3), and select_weight(x) using Equation (4).
Safegactor = knom/k 2
Where knom denotes the number of samples belonging to the same class in the k-nearest neighbor

1

9€Nractor = (14Densyeq+Hetrqr) ®
Where Hetrat denotes heterogeneous samples and Densrea denotes density
Seletheight =wHx* Safefactor +(1-w) = 9eNgactor 4

Where w denotes weight

These metrics guide the generation of synthetic samples. The number of synthetic samples required for class ci is determined by the
difference m—|cil. New samples are generated using a weighted random strategy until the desired number is reached. Once completed, the
enhanced minority class (original plus synthetic data) is added to the balanced dataset D'.

Next, the algorithm applies one of three possible cleaning strategies to handle the majority classes. The first strategy, GDHS_LC (Local
Cleaning), involves computing the importance degree IMPdeg(x) for each sample using Equation (5), and identifying two sets: S_overmin
(majority samples similar to minority ones) and S_overmaj (samples that are outliers within the majority class), using Equations (6) and
(7), respectively. The retained samples from the majority class, cj, are then added to D".

IMPeg = ersust(x,,) Seletheight(x) (5)
Where S, (X,) Denotes the set of all minority samples.

Savermin = {lexj € xrcn(::j) /\IMPeg(Xj) > avg(IMPeg (xrcn(;]q))))} (6)
Sovermin DeNOtes the set of majority samples that need to be cleaned.

Savermaj = {lexj € xrcn(::j) /\RM(Xj) > erem} (7)

Sovermaj Denotes the set of majority samples that overlapped with other majority class samples.

The second strategy, GDHS_GL (Global Cleaning), starts by computing IMPdeg for most samples. For each sample in a majority class, it
identifies the set S_Govermin using Equation (8). The algorithm calculates how many samples must be removed (delnum |cj-m). If
S_Govermin has enough samples, the algorithm removes delnum samples; otherwise, it removes the remaining samples from S_overmaj,
ensuring the majority class is reduced to the mean size. The rest are kept in D".

c_ma

Scovermin = {lexj € Xmaj j/\IMPeg(Xj) > av.g(IMPeg(xmaj)))} (8)

The third cleaning strategy, GDHS_BA (Balance-aware), also begins by computing IMPdeg(x) for all majority samples and identifying
S_overmin using Equation (6). Like GDHS_GL, the algorithm calculates how many samples to delete and removes them from S_overmin
and, if needed, from S_overmaj to balance the class size to m.

Finally, after processing all minority and majority classes with the selected oversampling and cleaning strategies, the algorithm returns the
final balanced dataset D', ready for use in training a classifier with reduced risk of bias toward the majority class.

2.2. Gradient Boosting Decision Trees

The pseudocode of GBDT is as follows.
1: Input: Dataset D = {(x;,y;)}/~,, learning rate «, number of boosting
rounds 7', class balanced loss function £(y, p)

2: Initialize prediction scores: :,(.“J «—OQOforalli=1,..., n
3: fort=1to 7T do
4: Compute predicted probability: pfl"l) «— a(:,(t_”) .

Compute gradients and Hessians:

o

(t—1)

®  Oyur™") op;
9i L 2 T =)
dp; 0z;
2 F L
B 0y, p) (opitY 0(ys, p" 1))_ o2pltY
i o)z 82D ap D o=y

6: Fit regression tree f;(-) to targets {—gf”/hft)} with weights hft)
7 Update raw prediction:

:ft) — ;5‘7” + afi(x:)

8: end for oo
9: Return: Final prediction p; = 0(:}1)) for all ¢



54 International Journal of Engineering, Science and Information Technology, 5 (3), 2025, pp. 51-57

2.3. Combination of GDHS and GBDT
The pseudocode of the combination of GDHS and GBDT is as follows.

1. // Step 1: GDHS Preprocessing

2. Calculate mean class size m from D using Eq. (1)
3 for each minority class c_i in X_min do

4 for each sample x in c_i do

5. Compute safe_factor(x) using Eg. (2)

6 Compute gen_factor(x) using Eq. (3)

7 Compute select_weight(x) using Eq. (4)

8

end for
9. syn_num + m - |c_1il
10. while syn_num > O do
11. Generate synthetic sample using weighted interpolation
12. syn_num + syn_num - 1
13. end while
14. Add c_i (with synthetic samples) to D’
15. end for

16. for each majority class c_j in X_maj do

17. for each sample x in c_j do

18. Compute IMPdeg(x) using Eq. (5)

19. Identify S_overmin and S_overmaj using Eq. (6-7)

20. end for

21. Perform cleaning (LC, GL, or BA strategy) to reduce |c_jl tom
22. Add retained c<_j samples to D’

23. end for

24. // Step 2: GBDT Classification on D’
25. Initialize z_i + O for all samples in D’
26. for t =1 to T do

27. Compute predicted prob: p_i + sigmoid(z_i)

28. Compute gradient g_i and Hessian h_i using class-balanced loss
29. Fit regression tree f_t to -g_i / h_i with weight h_i

30. Update: z_i + z_i + alpha - f_t(x_i)

31. end for

32. Compute final prediction: p_i + sigmoid(z_i)
33. Return p_i as the predicted probability for each xz_i

2.3. Classifier Performance
Classifier Performance will be measured using the Matthews Correlation Coefficient (MCC), Precision, Recall, and F-Value. This classifier
performance measurement is based on the confusion matrix, as shown in Table 1[26].

Table 1. Confusion Matrix

Predictive Positive Class Predictive Negative Class
Actual Positive Class True Positive (TP) False Negative (FN)
Actual Negative Class False Positive (FP) True Negative (TN)

The following Equation can be seen in the Matthews Correlation Coefficient (MCC), Precision, Recall, and F-Value calculations [27].

TP x TN—FP x FN
Mcc = (TN x FN)(TN x FP)(TN x FN)(TP x FP) (9)
Precision = (10)
TP+FP
Recall = TP (11)
F — Value = 2x Pre'ci'sion x Recall (12)
Precision+Recall

3. Results and Discussion

3.1. Dataset
The dataset used in this study can be seen in Table 1.
Table 2. Dataset

Dataset #EX  #Atts Distribution of Class IR
Contraceptive 1473 9 629/333/511 1.89
Flare 1066 11 147/211/239/95/43/331 7.70
Car Evaluation 1728 6 384/69/1210/65 18.62
Thyroid Disease 720 21 17/37/666 39.18
Red Wine Quality 1599 11 10/53/681/638/199/18 68.10
Page-Blocks 5473 10 4913/329/28/88/115 188.72

Table 2 shows six commonly used datasets in machine learning, each with different sizes, features, and class distributions. Some datasets,
like Page-Blocks and Red Wine Quality, have a high class imbalance (indicated by high IR values), while others, like Contraceptive, are
more balanced. These datasets are often used to test algorithms' performance, especially in handling imbalanced data.
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3.2. Testing for Classifier Performance
The results can be seen in Table 3.

Table 3. Classifier Performance

GDHS+GDBT SMOTE+XGBoost CatBoost Select-SMOTE+LightGBM
Dataset Contraceptive
MCC 0.983 0.910 0.921 0.965
Precision 0.872 0.791 0.803 0.802
Recall 0.875 0.825 0.817 0.881
F-Value 0.881 0.818 0.876 0.867
Dataset Flare
MCC 0.967 0.956 0.961 0.949
Precision 0.817 0.856 0.727 0.815
Recall 0.854 0.835 0.841 0.819
F-Value 0.873 0.816 0.849 0.881
Dataset Car Evaluation
MCC 0.985 0.912 0.879 0.926
Precision 0.879 0.865 0.874 0.891
Recall 0.865 0.876 0.861 0.875
F-Value 0.867 0.815 0.786 0.811
Dataset Thyroid Disease
MCC 0.876 0.816 0.798 0.817
Precision 0.901 0.814 0.807 0.897
Recall 0.859 0.845 0.871 0.819
F-Value 0.876 0.881 0.863 0.814
Dataset Red Wine Quality
MCC 0.854 0.813 0.703 0.811
Precision 0.865 0.854 0.711 0.813
Recall 0.834 0.811 0.787 0.838
F-Value 0.871 0.866 0.765 0.798
Dataset Page-Blocks
MCC 0.818 0.809 0.783 0.798
Precision 0.816 0.798 0.789 0.811
Recall 0.789 0.788 0.709 0.765
F-Value 0.821 0.719 0.799 0.789

The results above compare the performance of four classification method combinations across six different datasets using MCC, Precision,
Recall, and F-Value metrics. Overall, the GDHS+GDBT method consistently outperforms the others across most datasets, especially
regarding MCC and F-Value, indicating strong classification capability even on datasets with high class imbalance. For example, the
Contraceptive dataset achieves an MCC of 0.983 and an F-Value of 0.881. The SMOTE+XGBoost and Select-SMOTE+LightGBM
methods also perform well but slightly trail behind GDHS+GDBT, particularly on datasets like Thyroid and Red Wine. CatBoost shows
competitive performance, especially regarding Recall on datasets like Flare and Thyroid, but generally has lower MCC values than the
other methods. GDHS+GDBT is the most robust and accurate method across the datasets, making it a strong choice for handling imbalanced
data classification tasks.

The results can be seen in Figure 1.

MCC Score Comparison Across Datasets (Line Chart)
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i —e— GDHS+GDBT
. SMOTE+XGBoost
—+— CatBoost
—o— Select-SMOTE+LightGBM

09
[
g
2]
]
O 0.8
=

0.7+

0.6 ~ = o e ’

A e - N
Q‘\\‘ o K0 g© QU o
e W \\) ) 89
e AN A e
@ ! X o
o (e <«

Dataset

Fig 1. Classifier Performance
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3.2. Discussion

The experimental results show that the GDHS+GDBT method consistently achieves the highest MCC values across most datasets,
particularly those with high Imbalance Ratio (IR), such as Car Evaluation (IR = 18.62), Thyroid Disease (IR = 39.18), Red Wine Quality
(IR = 68.10), and Page-Blocks (IR = 188.72). This indicates that GDHS+GDBT is more robust and effective in handling imbalanced data
than other methods. The superior performance can be attributed to the hybrid design of GDHS (which enhances sample distribution)
combined with GDBT's strong generalization ability, leading to improved minority class recognition. Therefore, GDHS+GDBT is
particularly well-suited for classification tasks involving datasets with severe class imbalance.

4. Conclusion

This study confirms that combining the Generalization potential and learning Difficulty-based Hybrid Sampling (GDHS) with Gradient
Boosting Decision Tree (GBDT) yields a highly effective classification framework for multiclass imbalanced datasets. Through extensive
experiments on six benchmark datasets, the GDHS+GBDT approach consistently outperformed other baseline method, including
SMOTE+XGBoost, CatBoost, and Select-SMOTE+LightGBM, across key performance metrics such as Matthews Correlation Coefficient
(MCC), Precision, Recall, and F-Value. A particularly notable advantage of GDHS+GBDT is its robustness in handling datasets with high
Imbalance Ratios (IR), such as Red Wine Quality (IR = 68.10) and Page-Blocks (IR = 188.72). In these challenging conditions, most
conventional classifiers tend to be biased toward the majority class, resulting in poor recognition of minority classes. However, the GDHS
sampling method intelligently amplifies the learning potential of minority class instances while simultaneously reducing overlap and noise
from majority classes. When combined with GBDT's adaptive learning capabilities, this approach significantly improves minority class
recall without compromising overall accuracy. The experimental results suggest that GDHS+GBDT is particularly suitable for real-world
classification tasks where severe class imbalance and performance on minority instances are critical. Future work may explore the extension
of this hybrid approach to real-time and high-dimensional data and integration with deep learning models for enhanced generalization.
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