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Abstract 

 

Multiclass imbalanced classification remains a significant challenge in machine learning, particularly when datasets exhibit high Imbalance 

Ratios (IR) and overlapping feature distributions. Traditional classifiers often fail to accurately represent minority classes, leading to biased 

models and suboptimal performance. This study proposes a hybrid approach combining Generalization potential and learning Difficulty-

based Hybrid Sampling (GDHS) as a preprocessing technique with Gradient Boosting Decision Tree (GBDT) as the classifier. GDHS 

enhances minority class representation through intelligent oversampling while cleaning majority classes to reduce noise and class overlap. 

GBDT is then applied to the resampled dataset, leveraging its adaptive learning capabilities. The performance of the proposed 

GDHS+GBDT model was evaluated across six benchmark datasets with varying IR levels, using metrics such as Matthews Correlation 

Coefficient (MCC), Precision, Recall, and F-Value. Results show that GDHS+GBDT consistently outperforms other methods, including 

SMOTE+XGBoost, CatBoost, and Select-SMOTE+LightGBM, particularly on high-IR datasets like Red Wine Quality (IR = 68.10) and 

Page-Blocks (IR = 188.72). The method improves classification performance, especially in detecting minority classes, while maintaining 

high accuracy. 
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1. Introduction 

Imbalanced data classification is an increasingly prevalent challenge across various application domains such as fraud detection [1], 

medical diagnosis [2], security systems [3], and pattern recognition [4]. In the context of multiclass data, the challenge becomes even more 

complex due to the imbalance between two classes [5] and among multiple overlapping majority and minority classes, each with varying 

degrees of sample representation [6]. In multiclass imbalanced classification, the difficulty lies in the fact that a model must learn to 

differentiate not just between a majority and a single minority class (as in binary imbalance) but among several classes [7], which may 

have drastically different numbers of instances [8]. This situation often leads to what is known as the "multiclass imbalance problem," 

where: One or more classes dominate the training process (majority classes)[9], Several other courses are severely underrepresented 

(minority classes), Some classes may be borderline[10] or overlapping [11], leading to ambiguity in decision boundaries [12]. 

Traditional classification algorithms perform poorly under these conditions because they optimize for overall accuracy [13]. This can be 

misleading: achieving high accuracy by correctly classifying majority class samples while consistently misclassifying minority ones [14]. 

Furthermore, the inter-class imbalance (i.e., the imbalance between any pair of classes) and intra-class variability (variance within the same 

class) introduce further difficulties, especially when classes have overlapping feature distributions [15]. 

One widely used approach to improve classification performance is the Gradient Boosting Decision Tree (GBDT). GBDT is known for its 

ability to build strong ensembles of decision trees gradually and adaptively. However, recent studies show that while GBDT performs well 

on balanced datasets, it remains vulnerable to distribution bias when applied to imbalanced data, especially in multiclass settings. Several 

studies have proposed modifications to the loss function, such as Focal Loss, Class Balanced Loss, and Asymmetric Loss, which aim to 

penalize misclassification of minority classes more heavily. While these methods improve sensitivity toward minority classes, they rely 

heavily on the original data distribution [16]. 

As an alternative algorithm-level approach, data-level resampling methods offer distinct advantages because they do not alter the model 

architecture and can be applied across various learning algorithms [17]. In this domain, Yan et al developed the GDHS (Generalization 

potential and learning Difficulty-based Hybrid Sampling) method. [18] provides a significant contribution. GDHS is a hybrid sampling 

technique designed explicitly for multiclass imbalanced data, combining two main strategies: intelligent oversampling based on learning 
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difficulty and the generalization potential of minority samples, and majority class cleaning using three different techniques to handle class 

overlaps. The study demonstrated that GDHS[18] consistently outperforms 12 state-of-the-art methods, such as SMOTE, MDO, and 

SHSampler, in terms of mGM (mean geometric mean) and MAUC (multiclass area under the curve) metrics. 

Compared to other methods like Local density-based adaptive sampling[19], which also adopt a hybrid approach, GDHS offers 

improvements by integrating safe sampling and generalization-aware weighting, considering sample density and heterogeneous distribution 

in the synthetic space. Meanwhile, methods like MC-RBO[20] and MC-CCR[21] focus on potential and energy-based oversampling 

functions but tend to neglect majority class cleaning, which often plays a critical role in classification inaccuracy. 

In this context, integrating GDHS and GBDT[22] represents a promising synergistic strategy. GDHS prepares a more representative and 

clean dataset through intelligent sampling-based preprocessing. At the same time, GBD, modified with a loss function adaptive to minority 

classes, can optimally leverage this data during training. Combining data-level preprocessing and algorithm-level learning strengths, this 

approach is expected to enhance accuracy, Recall, and AUC for minority classes without sacrificing the model's overall performance. 

The urgency of this integration becomes even more critical in real-world applications that require high sensitivity to minority classes, such 

as rare disease detection or financial fraud analysis. Therefore, this study proposes the integration of GDHS as a preprocessing stage and 

GBDT as the primary classifier, and compares it against other baselines such as SMOTE+XGBoost[23], CatBoost[24], and Select-

SMOTE+LightGBM[25] to evaluate the effectiveness of the proposed hybrid model. 
 

2. Method 

2.1. Generalization Potential and Learning Difficulty-Based Hybrid Sampling 
The pseudocode of GDHS is as follows. 

 

 

 
 

The provided pseudocode outlines the GDHS, designed to address class imbalance in supervised learning tasks. The algorithm performs 

oversampling for minority classes and various cleaning (undersampling) strategies for majority classes to yield a balanced dataset D′.  
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The process begins by calculating the mean value m of all class sizes in the original dataset D using Equation 1.  

𝑚 =
∑ |𝑐𝑖|𝑛

𝑖=1

𝑛
  (1) 

Where ci denotes the set of samples of the i th class of the imbalanced dataset D 

For each minority class ci, the algorithm iterates over its samples and computes three key metrics: safe_factor(x) using Equation (2), 

gen_factor(x) using Equation (3), and select_weight(x) using Equation (4).  

𝑆𝑎𝑓𝑒𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑘ℎ𝑜𝑚/𝑘  (2) 

Where khom denotes the number of samples belonging to the same class in the k-nearest neighbor 

𝑔𝑒𝑛𝑓𝑎𝑐𝑡𝑜𝑟 =
1

(1+𝐷𝑒𝑛𝑠𝑟𝑒𝑎+𝐻𝑒𝑡𝑟𝑎𝑡)
 (3) 

 Where Hetrat denotes heterogeneous samples and Densrea denotes density 

𝑆𝑒𝑙𝑒𝑐𝑡𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑤 ∗ 𝑠𝑎𝑓𝑒𝑓𝑎𝑐𝑡𝑜𝑟 + (1 − 𝑤) ∗ 𝑔𝑒𝑛𝑓𝑎𝑐𝑡𝑜𝑟 (4) 

Where w denotes weight 

 

These metrics guide the generation of synthetic samples. The number of synthetic samples required for class ci is determined by the 

difference m−∣ci∣. New samples are generated using a weighted random strategy until the desired number is reached. Once completed, the 

enhanced minority class (original plus synthetic data) is added to the balanced dataset D′. 

Next, the algorithm applies one of three possible cleaning strategies to handle the majority classes. The first strategy, GDHS_LC (Local 

Cleaning), involves computing the importance degree IMPdeg(x) for each sample using Equation (5), and identifying two sets: S_overmin 

(majority samples similar to minority ones) and S_overmaj (samples that are outliers within the majority class), using Equations (6) and 

(7), respectively. The retained samples from the majority class, cj, are then added to D′. 

 

𝐼𝑀𝑃𝑒𝑔 = ∑ 𝑆𝑒𝑙𝑒𝑐𝑡𝑤𝑒𝑖𝑔ℎ𝑡(𝑥)𝑥∈𝑆𝑎𝑠𝑡(𝑥𝑞)   (5) 

Where 𝑆𝑎𝑠𝑡(𝑋𝑞) Denotes the set of all minority samples.  

𝑆𝑜𝑣𝑒𝑟𝑚𝑖𝑛 = {𝑥𝑗|𝑥𝑗 ∈ 𝑥𝑚𝑎𝑗

𝑐(𝑥𝑞)
⋀ 𝐼𝑀𝑃𝑒𝑔(𝑋𝑗) > 𝑎𝑣𝑔(𝐼𝑀𝑃𝑒𝑔 (𝑥𝑚𝑎𝑗

𝑐(𝑥𝑞)
)))} (6) 

 

𝑆𝑜𝑣𝑒𝑟𝑚𝑖𝑛 Denotes the set of majority samples that need to be cleaned. 

𝑆𝑜𝑣𝑒𝑟𝑚𝑎𝑗 = {𝑥𝑗|𝑥𝑗 ∈ 𝑥𝑚𝑎𝑗

𝑐(𝑥𝑞)
⋀ 𝑅𝑀(𝑋𝑗) > 𝜃𝑟𝑒𝑚}  (7) 

 

 𝑆𝑜𝑣𝑒𝑟𝑚𝑎𝑗 Denotes the set of majority samples that overlapped with other majority class samples. 

 

The second strategy, GDHS_GL (Global Cleaning), starts by computing IMPdeg for most samples. For each sample in a majority class, it 

identifies the set S_Govermin using Equation (8). The algorithm calculates how many samples must be removed (delnum |cj-m). If 

S_Govermin has enough samples, the algorithm removes delnum samples; otherwise, it removes the remaining samples from S_overmaj, 

ensuring the majority class is reduced to the mean size. The rest are kept in D′. 

 

𝑆𝐺𝑜𝑣𝑒𝑟𝑚𝑖𝑛 = {𝑥𝑗|𝑥𝑗 ∈ 𝑥𝑚𝑎𝑗
𝑐_𝑚𝑎𝑗

⋀ 𝐼𝑀𝑃𝑒𝑔(𝑋𝑗) > 𝑎𝑣𝑔(𝐼𝑀𝑃𝑒𝑔(𝑥𝑚𝑎𝑗)))} (8) 

 

The third cleaning strategy, GDHS_BA (Balance-aware), also begins by computing IMPdeg(x) for all majority samples and identifying 

S_overmin using Equation (6). Like GDHS_GL, the algorithm calculates how many samples to delete and removes them from S_overmin 

and, if needed, from S_overmaj to balance the class size to m. 

Finally, after processing all minority and majority classes with the selected oversampling and cleaning strategies, the algorithm returns the 

final balanced dataset D′, ready for use in training a classifier with reduced risk of bias toward the majority class. 

 

2.2. Gradient Boosting Decision Trees 
The pseudocode of GBDT is as follows. 
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2.3. Combination of GDHS and GBDT 
The pseudocode of the combination of GDHS and GBDT is as follows. 

 
 

2.3. Classifier Performance 
Classifier Performance will be measured using the Matthews Correlation Coefficient (MCC), Precision, Recall, and F-Value. This classifier 

performance measurement is based on the confusion matrix, as shown in Table 1[26]. 

 

Table 1. Confusion Matrix 

 Predictive Positive Class Predictive Negative Class 

Actual Positive Class True Positive (TP) False Negative (FN) 

Actual Negative Class False Positive (FP) True Negative (TN) 

 

The following Equation can be seen in the Matthews Correlation Coefficient (MCC), Precision, Recall, and F-Value calculations [27]. 

 𝑀𝐶𝐶 =
𝑇𝑃 𝑥 𝑇𝑁−𝐹𝑃 𝑥 𝐹𝑁

√(𝑇𝑁 𝑥 𝐹𝑁)(𝑇𝑁 𝑥 𝐹𝑃)(𝑇𝑁 𝑥 𝐹𝑁)(𝑇𝑃 𝑥 𝐹𝑃)
   (9) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (10) 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃   (11) 

 𝐹 − 𝑉𝑎𝑙𝑢𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (12) 

 

3. Results and Discussion 

3.1. Dataset 
The dataset used in this study can be seen in Table 1. 

Table 2. Dataset 

Dataset #Ex #Atts Distribution of Class IR 

Contraceptive 1473 9 629/333/511 1.89 

Flare 1066 11 147/211/239/95/43/331 7.70 

Car Evaluation 1728 6 384/69/1210/65 18.62 

Thyroid Disease 720 21 17/37/666 39.18 

Red Wine Quality 1599 11 10/53/681/638/199/18 68.10 

Page-Blocks 5473 10 4913/329/28/88/115 188.72 

 

Table 2 shows six commonly used datasets in machine learning, each with different sizes, features, and class distributions. Some datasets, 

like Page-Blocks and Red Wine Quality, have a high class imbalance (indicated by high IR values), while others, like Contraceptive, are 

more balanced. These datasets are often used to test algorithms' performance, especially in handling imbalanced data. 
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3.2. Testing for Classifier Performance 
The results can be seen in Table 3. 

 

Table 3. Classifier Performance 

 GDHS+GDBT SMOTE+XGBoost CatBoost Select-SMOTE+LightGBM 

Dataset Contraceptive 

MCC 0.983 0.910 0.921 0.965 

Precision 0.872 0.791 0.803 0.802 

Recall 0.875 0.825 0.817 0.881 

F-Value 0.881 0.818 0.876 0.867 

Dataset Flare 

MCC 0.967 0.956 0.961 0.949 

Precision 0.817 0.856 0.727 0.815 

Recall 0.854 0.835 0.841 0.819 

F-Value 0.873 0.816 0.849 0.881 

Dataset Car Evaluation 

MCC 0.985 0.912 0.879 0.926 

Precision 0.879 0.865 0.874 0.891 

Recall 0.865 0.876 0.861 0.875 

F-Value 0.867 0.815 0.786 0.811 

Dataset Thyroid Disease 

MCC 0.876 0.816 0.798 0.817 

Precision 0.901 0.814 0.807 0.897 

Recall 0.859 0.845 0.871 0.819 

F-Value 0.876 0.881 0.863 0.814 

Dataset Red Wine Quality 

MCC 0.854 0.813 0.703 0.811 

Precision 0.865 0.854 0.711 0.813 

Recall 0.834 0.811 0.787 0.838 

F-Value 0.871 0.866 0.765 0.798 

Dataset Page-Blocks 

MCC 0.818 0.809 0.783 0.798 

Precision 0.816 0.798 0.789 0.811 

Recall 0.789 0.788 0.709 0.765 

F-Value 0.821 0.719 0.799 0.789 

 

 

The results above compare the performance of four classification method combinations across six different datasets using MCC, Precision, 

Recall, and F-Value metrics. Overall, the GDHS+GDBT method consistently outperforms the others across most datasets, especially 

regarding MCC and F-Value, indicating strong classification capability even on datasets with high class imbalance. For example, the 

Contraceptive dataset achieves an MCC of 0.983 and an F-Value of 0.881. The SMOTE+XGBoost and Select-SMOTE+LightGBM 

methods also perform well but slightly trail behind GDHS+GDBT, particularly on datasets like Thyroid and Red Wine. CatBoost shows 

competitive performance, especially regarding Recall on datasets like Flare and Thyroid, but generally has lower MCC values than the 

other methods. GDHS+GDBT is the most robust and accurate method across the datasets, making it a strong choice for handling imbalanced 

data classification tasks. 

The results can be seen in Figure 1. 

 
Fig 1. Classifier Performance 
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3.2. Discussion 
The experimental results show that the GDHS+GDBT method consistently achieves the highest MCC values across most datasets, 

particularly those with high Imbalance Ratio (IR), such as Car Evaluation (IR = 18.62), Thyroid Disease (IR = 39.18), Red Wine Quality 

(IR = 68.10), and Page-Blocks (IR = 188.72). This indicates that GDHS+GDBT is more robust and effective in handling imbalanced data 

than other methods. The superior performance can be attributed to the hybrid design of GDHS (which enhances sample distribution) 

combined with GDBT's strong generalization ability, leading to improved minority class recognition. Therefore, GDHS+GDBT is 

particularly well-suited for classification tasks involving datasets with severe class imbalance. 

 

4. Conclusion 
 

This study confirms that combining the Generalization potential and learning Difficulty-based Hybrid Sampling (GDHS) with Gradient 

Boosting Decision Tree (GBDT) yields a highly effective classification framework for multiclass imbalanced datasets. Through extensive 

experiments on six benchmark datasets, the GDHS+GBDT approach consistently outperformed other baseline method, including 

SMOTE+XGBoost, CatBoost, and Select-SMOTE+LightGBM, across key performance metrics such as Matthews Correlation Coefficient 

(MCC), Precision, Recall, and F-Value. A particularly notable advantage of GDHS+GBDT is its robustness in handling datasets with high 

Imbalance Ratios (IR), such as Red Wine Quality (IR = 68.10) and Page-Blocks (IR = 188.72). In these challenging conditions, most 

conventional classifiers tend to be biased toward the majority class, resulting in poor recognition of minority classes. However, the GDHS 

sampling method intelligently amplifies the learning potential of minority class instances while simultaneously reducing overlap and noise 

from majority classes. When combined with GBDT's adaptive learning capabilities, this approach significantly improves minority class 

recall without compromising overall accuracy. The experimental results suggest that GDHS+GBDT is particularly suitable for real-world 

classification tasks where severe class imbalance and performance on minority instances are critical. Future work may explore the extension 

of this hybrid approach to real-time and high-dimensional data and integration with deep learning models for enhanced generalization. 
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