

Copyright © Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

Implementation of an Intrusion Detection System Using Snort and

Log Visualization Using ELK Stack

Fatih Dien Robbani1, Emy Haryatmi1*, Tri Agus Riyadi2, Riza Adrianti Supono3, Ary Bima Kurniawan4, Rosdiana4

1Magister of Electical Engineering, Gunadarma University, Depok, Indonesia

2Department of Informatics, Gunadarma University, Depok, Indonesia
3Magister of Information System Management, Gunadarma University, Depok, Indonesia

4Department of Information System, Gunadarma University, Depok, Indonesia

*Corresponding author E-mail: emy_h@staff.gunadarma.ac.id

The manuscript was received on 28 December 2024, revised on 22 January 2025, and accepted on 15 May 2025, date of publication 4 June 2025

Abstract

Cyber threats like malware, ransomware, and DDoS attacks demand fast and integrated detection systems. Traditional network monitor-

ing tools often struggle to identify complex real-time attack patterns. This study evaluates the integration of Snort, an Intrusion Detection

System (IDS), with the ELK Stack (Elasticsearch, Logstash, Kibana) to detect and visualize cyberattacks effectively. The system was

tested against three attack scenarios: a Windows ping flood, port scanning using Zenmap, and SSH brute force attacks via Nmap Script-

ing Engine (NSE). Wireshark was employed as a supporting tool to monitor raw network traffic. The results indicate that Snort detected

all simulated attacks in real time, and the ELK Stack efficiently processed and visualized the alert data. However, limitations in Kibana's

dashboard refresh rate slightly hindered real-time monitoring capabilities. Overall, the integration of Snort and the ELK Stack proves

effective for network threat detection and analysis, with room for future improvements in visualization performance and automated re-

sponse mechanisms.

Keywords: Snort, ELK Stack, Nmap, NSE, Ping Flood.

1. Introduction

The rapid growth of digital technologies has improved convenience for individuals and organizations and led to more frequent and so-

phisticated cyberattacks. Threats such as malware, ransomware, and Distributed Denials of Service (DDoS) can cause financial loss and

data breaches [1][2][3], making cybersecurity a growing concern [4]. Some architecture is also used to secure various distributed systems

[5]. One challenge in intrusion detection is recognizing complex and stealthy attack patterns [3][6]. Recent surveys have proposed ways

to improve the performance of open-source IDS like Snort in high-speed network environments [7], as traditional tools often fail to de-

liver real-time threat insight.

Traditional network monitoring tools often fail to provide comprehensive and real-time threat insights. Therefore, open-source tools such

as Snort and the ELK Stack (Elasticsearch, Logstash, and Kibana) have become effective network security monitoring and analysis

solutions. Snort serves as a Network Intrusion Detection System (NIDS), capable of detecting potential attacks by analyzing real-time

network traffic. At the same time, the ELK Stack enables efficient storage, search, and visualization of data logs [2][8].

Several previous studies have explored the application of Snort and ELK Stack in securing network infrastructures. Snort was

implemented as both an IDS [9][10][11] and IPS to detect and prevent intrusions on an academic network [2]. The ELK Stack was

examined for log event management, focusing on monitoring SSH activity and preventing brute force attacks [8]. The effectiveness of

Snort in detecting multiple flooding attacks on wireless networks was demonstrated, with detection results visualized using the BASE

web interface [12]. Furthermore, the evaluation of wireless LAN security through brute force penetration testing provided insights into

vulnerabilities in weak passphrase configurations [1], and the impact of DoS attacks using Hping3 on server performance was also

investigated [13].

Building upon these prior works, this study aims to integrate Snort and ELK Stack into a unified system to detect and analyze network

cyber threats. Snort captures suspicious activity in real-time, while ELK Stack supports centralized data processing and visualization.

This integration is aligned with recent advances that utilize containerized Snort and big data Technologies to enhance scalability and

monitoring efficiency [14]. To evaluate their effectiveness, this research simulates common network attacks such as ping floods, brute

force, and port scanning.

International Journal of Engineering, Science and Information Technology
Volume 5 No. 3 (2025) pp. 220-228

ISSN 2775-2674 (online)

Website: http://ijesty.org/index.php/ijesty

DOI: https://doi.org/10.52088/ijesty.v5i3.901

Research Paper, Short Communication, Review, Technical Paper

http://creativecommons.org/licenses/by/3.0/
mailto:emy_h@staff.gunadarma.ac.id
http://ijesty.org/index.php/ijesty

International Journal of Engineering, Science and Information Technology,5 (3), 2025, pp. 220-28 221

2. Literature Review

This section presents an overview of previous studies and foundational concepts relevant to detecting cyberattacks using open-source

tools. It covers the snort Intrusion Detection System (IDS) and the ELK Stack, as well as recent experimental research on detecting

common cyber threats such as flooding, port scanning, and brute-force attacks.

2.1. Overview of Snort and ELK Stack
Snort is an open-source network intrusion detection system (NIDS) developed by Sourcefire. It monitors network traffic in real-time,

analyzes packet data, and logs suspicious or potentially harmful activities [3][15]. Snort is capable of identifying various attacks, such as

buffer overflow, port scanning, and Denial of Service (DoS) attacks [2][16]. Snort operates based on predefined rules that specify the

patterns or characteristics of detectable attacks. Each rule corresponds to a specific type of threat, and once matched, Snort generates

alerts and logs the event [17][18]. These customizable rules allow the user to tailor the detection system to their specific needs.

Snort can run in three main modes:

1. Sniffer Mode, Snort display network traffic in real-time

2. Packet Logger, Snort stores network traffic data into log files

3. Intrusion Detection Mode: Snort analyzes packets according to the rule set and generates alerts when anomalies are detected

[17][18].

Fig 1. Snort startup process on Ubuntu terminal

Snort's main advantages are its flexibility and availability. However, its detection capability is limited by the quality and completeness of

the rules it uses. If the rule is outdated or incomplete, its effectiveness in identifying intrusions may be reduced [18] [19]. These limita-

tions have encouraged various improvements in the deployment of Snort. For instance, a recent study proposed a cloud-based Snort

NIDS architecture using containerization and big data processing to address scalability and remote monitoring challenges [14] [20].

The ELK Stack is an open-source tool for data analysis and log management. It consists of three main components: Elasticsearch,

Logstash, and Kibana. Together, these tools support collecting, processing, searching, and visualizing large volumes of log data from

various sources [21].

Elasticsearch is a distributed search and analytics engine that stores, indexes, and retrieves large datasets in real-time. It operates based

on a cluster consisting of nodes and shards. Nodes are individual instances that store data and perform processing, while shards are parti-

tions of data that allow for load distribution and performance optimization. With its ability to scale horizontally, Elasticsearch ensures

stable performance even as data grows [22][23]. Its ability to index various data formats and provide integration via APIs makes it suita-

ble for diverse application scenarios [19][21][23].

Logstash is a data processing pipeline that supports various inputs, filters, and output plugins. It allows raw log data to be transformed

and standardized before being forwarded to Elasticsearch [8]. For example, unstructured log data can be parsed into a structured format

using filters. Filters can perform pattern extraction, value transformation, or data merging from multiple sources. This makes Logstash

highly flexible in handling real-time data from various systems [22].

Finally, Kibana provides robust visualization capabilities for the data stored in Elasticsearch. It offers customizable dashboards that dis-

play metrics and trends tailored to user needs [21]. With its user-friendly interface, Kibana simplifies analyzing and sharing insights

within teams, allowing for efficient collaboration.

2.2. Cyberattack Detections and Experimental Studies
Cyberattacks are deliberate exploitations of systems to access, damage, or disrupt their everyday operations. Common attack types such

as flooding, port scanning, and brute-force login attempts aim to compromise system availability or integrity.

In the context of network monitoring, flooding, especially ICMP Flood, is often triggered by repeated ping commands that overwhelm

the target's network. Despite its simplicity, this Denial of Service (DoS) attack remains effective, especially in unprotected environments.

Snort detects such attacks by identifying excessive ICMP Echo requests within a short interval [2][17].

Port scanning is commonly performed using tools such as Nmap or Zenmap to prove target machines for open or vulnerable ports. This

technique often proceeds to a more advanced intrusion. Snort detects port scans by correlating multiple connection attempts from a single

222 International Journal of Engineering, Science and Information Technology,5 (3), 2025, pp. 220-28

IP address to a range of destination ports. Detection is rule-based, often identifying SYN Packets without a proper TCP Handshake [12],

[18].

Brute-force attacks, particularly over SSH, involved repeated attempts to guess username and password combinations to gain unauthor-

ized access. These attacks can be detected by quickly monitoring repeated failed login attempts. Snort flags such behavior by identifying

the login failure patterns or abnormal connection frequencies [22], [23]. Similar works, such as [17] and [18], snort was deployed in

testbed environments to simulate controlled attacks. The results indicated that detection latency was minimal when alerts were forwarded

to Logstash and indexed by Elasticsearch. Kibana provided a real-time dashboard for tracking the status and frequency of each threat.

The combination of Snort and ELK offers a reactive alert system and a platform for retrospective log analysis. These capabilities are

essential for research involving repeated attack simulation and comparative analysis, as will be conducted in this study.

3. Methods

3.1. Research Design
This study applies an experimental method to evaluate the effectiveness of Snort 3 and the ELK Stack in detecting and visualizing

cyberattacks in real-time. The approach is conducted within an isolated local network, where a laptop acts as the attacker, a micro-PC as

the target, and a router is used as a switch to connect the devices. The scenario is designed to imitate real-time intrusion detection and log

visualization.

3.2. Network Topology
The experimental setup consists of a single subnet of three physical devices: a Windows laptop (attacker), a micro PC running Ubuntu

24.04.1 LTS (Target), and a router acting as a switch. The attacker and target devices are connected to a router that functions solely as a

switch without internet access. This configuration allows the simulation of attacks without external interference or risk to public systems.

No virtualization is used to maintain a lightweight and real-time environment.

Fig 2. Network topology of the testbed environment

The figure illustrates the logical connection among the devices. The attacker device launches various cyberattacks while the target device

runs Snort and ships logs to the ELK Stack for analysis and visualization.

3.3. System Configuration
The target system is an Ubuntu-based machine running Snort 3 as the Network Intrusion Detection System (NIDS). Log data is sent to

Logstash, indexed by Elasticsearch, and visualized in Kibana. The attacker uses a Windows laptop with tools including CMD, Zenmap,

and Nmap scripting engine. Wireshark is installed on the target device for independent traffic capture and verification during testing.

3.4. Attack Scenarios
Three attack types were selected for testing. Each attack was executed in three separate iterations to assess consistency in detection and

logging

1. Ping Flood Attack using Windows CMD to generate ICMP echo requests.

2. Port Scanning using Zenmap (Nmap GUI) to probe open ports.

3. SSH Brute Force Attack using Nmap Scripting Engine to try SSH Logins repeatedly.

3.5. Testing Procedure
For each attack scenario, the following procedure was followed:

1. Launch the attack from the attacker's machine.

2. Capture traffic on the target machine using Snort 3.

3. Monitor packet flow and alert generation using Wireshark.

4. Forward detection logs to ELK Stack for storage and visualization.

5. Compare the results with the expected detection pattern.

The analysis includes observing whether Snort successfully generates alerts for each attack, the time it takes to detect and log the event,

and how Kibana displays the data.

International Journal of Engineering, Science and Information Technology,5 (3), 2025, pp. 220-28 223

Table 1. Summary of Cyberattack Testing Procedures

Table 1 combines key information from all three attack tests, including attack type, execution tool, duration, iterations, detection status

by Snort, and visualization status in Kibana, and notes about what to look for from the test.

4. Results and Discussion

4.1. Analysis of Ping Flood Attack
This subsection discusses the results of a Windows Ping Flood attack executed via the Command Prompt (CMD) application. The attack

involves sending large-sized ICMP packets high-frequency to flood the target system's network. The experiment was conducted in three

executions using similar parameters to ensure consistency in observation and detection.

Figure 3 illustrates the terminal output during one execution of the Ping Flood attack. The attack used ICMP packets of 65,500 bytes,

continuously targeting the victim IP address for 15 seconds. The ping statistics indicate all packets were delivered successfully, with

response times ranging between 1 to 2 milliseconds. While the visual output here represents one trial, all three executions resulted in

similar packet transmission behavior and duration.

Fig 3. CMD Output of Ping Flood Attacks

Wireshark was used to capture traffic during the attacks to observe the network impact in more detail. Figure 4 shows the Wireshark

capture filtered by ICMP protocol, focusing on one representative execution. The capture includes the main interface window and the

IPv4 conversation tab, showing 32 packets sent from the attacker (IP A: 192.168.1.2) to the target (IP B: 192.168.1.1) and 16 replies in

return. The consistent number of packets exchanged across the tests confirms symmetrical ICMP communication behavior under flood

conditions.

No
Attack Type

Tools

Used
Durations Iterations Snort Detection Kibana Visualization Notes

1
ICMP Ping

Flood

Windows

CMD

15

seconds
3 Yes Yes

High ICMP

packet rate

2 Port Scan Zenmap
~20

seconds
3 Yes Yes

Sequential TCP

SYN

3
SSH Brute

Force

Nmap

Script

~10

minutes
3 Yes Yes

Repeated login

attempts

224 International Journal of Engineering, Science and Information Technology,5 (3), 2025, pp. 220-28

Fig 4. Wireshark Capture of Ping Flood Attacks

Figure 5 presents the Kibana dashboard displaying Snort detection logs related to the Ping Flood attack. The dashboard includes pie and

bar charts highlighting detected alert types and their timestamps. All detections occurred around the scheduled attack times, with classifi-

cation labels such as PROTOCOL-ICMP and SERVER-OTHER. Additional tables on the dashboard list alert details by

source/destination IP, protocol, and signature classification.

Fig 5. Kibana Dashboard of Ping Flood Attacks

Although Figure 3 and Figure 4 represent a single execution of the attack for visual clarity, the experiment was conducted three times

under similar conditions to ensure reliability. The selected screenshots were taken from the second execution, which yielded the highest

packet and alert counts among the three trials (32 packets, 83 Snort entries). The summarized results from all three executions are pre-

sented in Table 2, which captures key parameters such as execution time, attack duration, packet counts from Wireshark, number of

alerts detected by Snort via Kibana, alert classifications, and Snort detection timestamps.

Table 2. Summary of Ping Flood Attack Results

Execution Time Duration Packets (A/B) Alerts Main Classification

1 19:08:10 15s 15/15 75 Info Leak, Misc. Activity, Misc. Attack

2 19:17:01 15s 16/16 83 Info Leak, Misc. Activity, Misc. Attack

3 19:19:30 15s 15/15 75 Info Leak, Misc. Activity, Misc. Attack

Note: A = Attacker (192.168.1.2), B = Target (192.168.1.1)

The data in Table 2 confirms that the attack produced consistent results across all three executions. Each trial lasted 15 seconds and gen-

erated approximately 30–32 ICMP Packets. The Snort detection logs ranged from 75 to 83 entries, dominated by Information Leak and

Misc classifications. Activity, with the unusual ping rule contributing significantly to the alert count. These results verify that the system

was able to identify and log the Ping Flood behavior accurately

4.2. Analysis of Port Scan Attack
This test simulates a port scanning attack using Zenmap from the attacker's laptop to identify open services on the target system. The

scan was executed using the Intense Scan profile, which aggressively probes for open ports and gathers service information. According to

International Journal of Engineering, Science and Information Technology,5 (3), 2025, pp. 220-28 225

the result displayed in Figure 6, Zenmap successfully identified that TCP port 22 (SSH) and port 9200 (Elasticsearch) were open on the

target micro PC.

Fig 6. Zenmap Port Scan Output

During the attack, Wireshark was used to capture and analyze network traffic on the target. As shown in Figure 7, one scan execution

generated over 1,000 TCP conversations. This burst of activity is characteristic of a port scanning attempt, primarily when performed

using a profile with aggressive timing and probing options.

Fig 7. Wireshark TCP Conversations During Scan

A packet filter was applied to isolate packets with the SYN and ACK flags enabled to confirm which ports responded as open. This al-

lows analysts to identify SYN-ACK responses typically returned by services listening on open ports. As shown in Figure 8, visible SYN-

ACK packets from ports 22 and 9200 indicate that these services were active and responsive during the scan, confirming the findings

observed in Zenmap.

Fig 8. Filtered SYN-ACK Packets in Wireshark

The visualization in Figure 9 shows the detection result in Kibana. The Snort-generated alerts were successfully indexed into Elas-

ticsearch and displayed in the dashboard. Port scan activities were identified and grouped by timestamp, alert signature, and source IP.

The pie chart and bar graph components clearly illustrate the frequency and distribution of alerts. In contrast, the data table lists alert

types such as "TCP Ports Scan" and their associated metadata.

226 International Journal of Engineering, Science and Information Technology,5 (3), 2025, pp. 220-28

Fig 9. Kibana Dashboard Visualization of Port Scans

The detection and response data collected throughout this experiment are summarized in Table 3, including packet statistics and the

number of alerts generated. This shows Snort and ELK Stack's capability to detect port scanning in real time and present the findings in a

visually structured format.

Table 3. Summary of Port Scan Attack Results

Note: A =

Attacker (192.168.1.2), B = Target (192.168.1.1)

Based on the experimental results, the port scanning activity was executed as planned using Zenmap. The open ports detected by Zenmap

were confirmed through Wireshark analysis, and the packet behavior observed matched the expected scanning pattern. Furthermore,

Snort successfully identified the scanning attempt, and the alerts were properly visualized in Kibana. This confirms that the detection

pipeline functioned effectively during this test scenario.

4.3. Analysis of Brute Force Attack
This brute force attack simulates mass SSH login attempts to port 22 of the target device. Each of the three executions lasted approxi-

mately ten minutes, as specified in the test plan. The goal is to generate high-volume network traffic and trigger Snort to detect login

attempt patterns as Misc Activity over TCP and ICMP protocols. Figure 10 illustrates the attack execution using the NSE script ssh-

brute, which serves as the starting point for this analysis.

Fig 10. Brute Force SSH Attack using Nmap SSE through CMD terminal

Execution Time Packets (A/B) Alerts Main Classification

1 21:55:00 1356/1256 98 Misc. Activity, Info leak, Privacy Violation

2 22:04:01 1358/1267 96 Misc Activity, Info Leak, Vulnerable Web App

3 22:10:01 1353/1262 112 Misc Activity, Info Leak, Executable Code

International Journal of Engineering, Science and Information Technology,5 (3), 2025, pp. 220-28 227

The attack targeted the IP address 192.168.1.1 on TCP port 22 by attempting various common username-password combinations, includ-

ing root: root, admin: admin, and guest:123456789. Each attempt was displayed in real-time, continuing for ten minutes per session.

Wireshark captured packet exchanges between the attacker and the target to observe traffic flow during the attack, as shown in Figure 11.

Fig 11. Wireshark Capture of Brute Force SSH Traffic

Based on the capture in Figure 11, one execution session recorded approximately 66,086 packets, with 35,919 from the attacker (A) to

the target (B) and 30,167 packets in response. All outbound packets from the attacker targeted port 22. The packet flow exhibits a domi-

nant and structured pattern from A to B, indicative of continuous brute-force login attempts. Detection results were visualized via the

Kibana dashboard to understand the alert patterns and detection intervals. Figure 12 presents Snort's detection activity for the three attack

executions.

Fig 12. Kibana Dashboard Visualization of Brute Force Attack

Snort recorded detections across three ten-minute sessions. Alerts were mostly triggered by the "INDICATOR-SCAN Brute Force Login

Attempt" signature, which accounted for 79.14% of the alert types. The remaining 20.86% were related to ICMP traffic, mainly from

unreachable responses triggered by connection attempts. A summary of the results from Wireshark and Kibana for the three brute force

sessions is presented in Table 4.

Table 4. Summary of Brute Force Attack Results

The experimental results confirm that each execution produced significant traffic, most of which originated from the attacker. Snort iden-

tified and classified these attempts accurately, recording over 4,200 alerts in each session. The consistent detection patterns demonstrate

Snort's capability to recognize brute force behavior based on signature matching. Overall, this test validates the effective integration of

Snort and the ELK Stack in identifying SSH brute force attacks. The visualizations in Kibana offer a clear, real-time representation of the

threat activity, and the system's performance meets the detection targets established in the experimental design.

Execution Time Duration Packets (A/B) Alerts Main Classification

1 13:06:01 10 minute 35919/30167 4395 Misc. TCP, Misc. ICMP

2 13:26:01 10 minute 34490/28925 4234 Misc. TCP, Misc. ICMP

3 13:41:20 10 minute 36216/30399 4413 Misc. TCP, Misc. ICMP

228 International Journal of Engineering, Science and Information Technology,5 (3), 2025, pp. 220-28

5. Conclusion

This research demonstrates that the system successfully detected three types of cyberattacks: Windows Ping Flood, Port Scan using

Zenmap, and SSH Brute Force via the Nmap Scripting Engine. Each attack execution produced consistent detection results aligned with

the test plan regarding duration, traffic pattern, and alert classification. Integrating Snort and the ELK Stack proved effective for real-

time intrusion detection and analysis, delivering structured and analyzable attack logs through the Kibana interface. Overall, the system

achieved its intended goals and supports its log-based network security monitoring application.

Acknowledgment

The author would like to sincerely thank the academic advisor, Dr. Emy Haryatmi, SKom., MEngSc., MT, for their invaluable guidance

and support throughout this research. Special thanks also go to Fatahillah Furqon Abdul Aziz, who contributed significantly to preparing

and writing the report and this article. Their assistance was crucial in completing the experimental work and documentation process.

References

[1] Suroso and Sriyanto, “Evaluasi Keamanan Wireless Local Area Network Menggunakan Metode Penetration Testing pada RSUD

Alimuddin Umar Di Lampung Barat,” J. IndraTech, vol. 5, no. 1, pp. 32–46, 2024, doi: 10.56005/jit.v5i1.138.

[2] H. Suhendi and W. D. Cahyo, “Perancangan Dan Implementasi Keamanan Jaringan Menggunakan Snort Sebagai Intrusion

Prevention System (IPS) Pada Jaringan Internet STEI ITB,” NARATIF(Jurnal Ilm. Nas. Ris. Apl. dan Tek. Inform., vol. 03, no. 2,

pp. 60–68, 2021, doi: 10.53580/naratif.v3i02.137.

[3] G. Pradita and A. Pramono, “Implementasi Monitoring Keamanan Jaringan Pada Server Ubuntu Menggunakan Snort Intrusion

Detection Prevention System (IDPS) Dan Telegram Bot Sebagai Media Notifikasi Di PT SS UTAMA,” J. Mhs. Tek. Inform., vol. 8,

no. 4, pp. 5827–5834, 2024, doi: 10.36040/jati.v8i4.10069.

[4] Maulidar, E. Wanda, and M. Hijriatin, “Cybersecurity Awareness In HR: Protecting Employee Data in the Digital Era,” Int. J. Eng.

Sci. Inf. Technol., vol. 5, no. 2, pp. 237–242, 2025, doi: https://doi.org/10.52088/ijesty.v5i2.819.

[5] S. Akter, M. A. Hossain, and M. M. Rahman Redoy Akanda, “A Noble Security Analysis of Various Distributed Systems,” Int. J.

Eng. Sci. Inf. Technol., vol. 1, no. 2, 2021, doi: 10.52088/ijesty.v1i2.101.

[6] V. Gustina and A. Ananda, “Kecerdasan Buatan untuk Security Orchestration, Automation and Response: Tinjauan Cakupan,” J.

Komput. Terap., vol. 10, no. 1, pp. 36–47, 2024, doi: 10.35143/jkt.v10i1.6247.

[7] A. Gupta and L. Sen Sharma, “A categorical survey of state-of-the-art intrusion detection system-Snort,” Int. J. Inf. Comput. Secur.,

vol. 13, no. 3–4, pp. 337–356, 2020, doi: 10.1504/IJICS.2020.109481.

[8] F. S. Mukti and R. M. Sukmawan, “Integration of Low Interaction Honeypot and ELK Stack as Attack Detection Systems on

Servers,” J. Penelit. Pos dan Inform., vol. 11, no. 1, pp. 19–29, 2021, doi: 10.17933/jppi.v11i1.336.

[9] A. Erlansari, F. F. Coastera, and A. Husamudin, “Early Intrusion Detection System (IDS) using Snort and Telegram approach,”

SISFORMA - J. Inf. Syst., vol. 7, no. 1, pp. 21–27, 2020.

[10] D. Satin S, Wahyuddin, A. Kautsar, and A. Setyawan, “Intrusion Detection System Menggunakan Snort dan Telegram Sebagai

Media Notifikasi,” SisInfo J. Sist. Inf. dan Inform., vol. 7, no. 1, pp. 40–49, 2025.

[11] S. S. Sari and A. Tedyyana, “Analisis Efektivitas Rule Snort dalam Mendeteksi Serangan Jaringan,” Repeater Publ. Tek. Inform.

dan Jar., vol. 2, no. 4, pp. 1–15, 2024, doi: https://doi.org/10.62951/repeater.v2i4.194.

[12] P. P. Insani, I. Kanedi, and A. Al Akbar, “Implementasi Snort Sebagai Alat Pendeteksi Keamanan Jaringan Wireless Menggunakan

Linux Ubuntu,” J. Komputer, Inf. dan Teknol., vol. 3, no. 2, pp. 443–458, 2023, doi: 10.53697/jkomitek.v3.2.

[13] W. Haniyah, M. C. Hidayat, Z. F. I. Putra, V. A. Pertama, and A. Setiawan, “Simulasi Serangan Denial of Service (DoS)

menggunakan Hping3 melalui Kali Linux,” J. Internet Softw. Eng., vol. 1, no. 2, pp. 1–8, 2024, doi: 10.47134/pjise.v1i2.2654.

[14] F. A. Saputra, M. Salman, J. A. N. Hasim, I. U. Nadhori, and K. Ramli, “The Next‐Generation NIDS Platform: Cloud‐Based Snort

NIDS Using Containers and Big Data,” Big Data Cogn. Comput., vol. 6, no. 1, p. 19, 2022, doi: 10.3390/bdcc6010019.

[15] V. Wineka Nirmala, D. Harjadi, and R. Awaluddin, “Sales Forecasting by Using Exponential Smoothing Method and Trend

Method to Optimize Product Sales in PT. Zamrud Bumi Indonesia During the Covid-19 Pandemic,” Int. J. Eng. Sci. Inf. Technol.,

vol. 1, no. 4, 2021, doi: 10.52088/ijesty.v1i4.169.

[16] S. Oktarian, S. Defit, and Sumijan, “Clustering Students’ Interest Determination in School Selection Using the K-Means Clustering

Algorithm Method,” J. Inf. dan Teknol., vol. 2, pp. 68–75, 2020, doi: 10.37034/jidt.v2i3.65.

[17] H. Awal and A. P. Gusman, “Implementasi Intrusion Detection Prevention System Sebagai Sistem Keamanan Jaringan Komputer

Kejaksaan Negeri Pariaman Menggunakan Snort dan IPtables Berbasis Linux,” J. Sains Inform. Terap. E-ISSN, vol. 2, no. 2, pp.

74–80, 2023, doi: 10.62357/jsit.v2i1.184.

[18] C. D. Alviani, A. S. Padi, and N. Puspitasari, “Keamanan Siber di Masa Depan : Tantangan dan Teknologi yang Dibutuhkan,”

Semin. Nas. AMIKOM SURAKARTA 2024, vol. 2, pp. 1247–1254, 2024.

[19] W. Sholihah, S. Pripambudi, and A. Mardiyono, “Log Event Management Server Menggunakan Elastic Search Logstash Kibana

(ELK Stack),” JTIM J. Teknol. Inf. dan Multimed., vol. 2, no. 1, pp. 12–20, 2020, doi: 10.35746/jtim.v2i1.79.

[20] S. Sapriadi, Y. Yunus, and R. W. Dari, “Prediction of the Number of Arrivals of Training Students with the Monte Carlo Method,”

J. Inf. dan Teknol., vol. 4, pp. 1–6, 2022, doi: 10.37034/jidt.v4i1.168.

[21] A. Setiyawan, A. Pinandito, and W. Purnomo, “Pengembangan Sistem Informasi Log Management Server Monitoring

Menggunakan ELK (Elastic Search, Logstash dan Kibana) Stack pada Aplikasi Padichain di PT. Bank Rakyat Indonesia,” J.

Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 5, pp. 2142–2151, 2023.

[22] S. B. Dahal and M. Aoun, “Architecting Microservice Frameworks for High Scalability: Designing Resilient, Performance-Driven,

and Fault-Tolerant Systems for Modern Enterprise Applications,” J. Intell. Connect. Emerg. Technol., vol. 8, no. 4, pp. 58–70,

2023.

[23] A. Oussous and F. Z. Benjelloun, “A Comparative Study of Different Search And Indexing Tools For Big Data,” Jordanian J.

Comput. Inf. Technol., vol. 8, no. 1, pp. 72–86, 2022, doi: 10.5455/jjcit.71-1637097759.

