Evaluating the Quality of Agglomerative Hierarchical Clustering on Crime Data in Indonesia
Abstract
This study evallualtes the quallity of ALgglomeraltive Hieralrchicall Clustering with single linkalge, complete linkalge, alveralge linkalge, alnd walrd linkalge on the daltalset of the number of criminall calses in Indonesial (20ll0ll0ll-20ll23). The analysis compares clustering performance on the original and normalized datasets using the Davies-Bouldin Index (DBI), Silhouette Score (SS), Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), and Callinski-Harabasz Index (CH). The results showed that Ward Linkage provided the best clustering results, with the highest CH increasing from 65.826 to 66.873, clear cluster separation, and a stable structure (NMI = 0.5855, ARI = 0.6298). Single Linkage experienced a chaining effect, although it showed improvement in DBI from 0l.1793 to 0l.1765 and SS from 0l.6271 to 0l.640l0l, with NMI and ARI stable at 0l.4537 and 0l.5865, but CH decreased from 21.731 to 21.0l72. Complete Linkage was too aggressive in separating the data, shown by an increase in DBI from 0.5327 to 0.7116 and a decrease in SS from 0.6336 to 0.5830, although CH increased from 64.244 to 66.873. Average Linkage showed stable results, with NMI = 0l.6481 and ARI = 0l.7993 remaining, but a slight decrease in DBI from 0l.3874 to 0l.40l91, SS from 0l.6839 to 0l.6825, and CH from 42.358 to 40l.251. Data normalization generally helps to improve clustering quality by reducing the influence of feature scale differences. Several metrics showed improved cluster separation on normalized data, although the impact varied depending on the linkage method. Overall, Ward Linkage with normalization is recommended as the best method to produce more accurate clustering in Indonesia's crime data analysis.
Keywords
Full Text:
PDFReferences
AL. S. Revi, “Peralmallaln Jumlalh Tindalk Pidalnal Menurut Kepolisialn Daleralh Dengaln ALlgoritmal Balckpropalgaltion,” Semin. Nals. Salins Teknol. Inf., pp. 246–250l, 20l19.
E. Dalrnilal, “Infalnt Routine Monitoring System During 0l-12 Months Immunizaltion Using ALgglomeraltive Hieralrchicall Clustering ALlgorithm,” vol. 1, no. 2, pp. 1–6, 20l21, doi: 10l.30l596/jcositte.v1i1.xxxx.
Y. Reinalldi, N. Ulinnuhal, alnd M. Halfiyusholeh, “Compalrison of Single Linkalge, Complete Linkalge, alnd ALveralge Linkalge Methods on Community Welfalre ALnallysis in Cities alnd Regencies in Ealst Jalval,” J. Malt. Stalt. daln Komputalsi, vol. 18, no. 1, pp. 130l–140l, 20l21, doi: 10l.20l956/j.v18i1.14228.
S. Wulalndalri, “Clustering Indonesialn Provinces on Prevallence of Stunting Toddlers Using ALgglomeraltive Hieralrchicall Clustering,” Falkt. Exalctal, vol. 16, no. 2, 20l23, doi: 10l.30l998/falktorexalctal.v16i2.17186.
AL. Rialni, Y. Susialnto, alnd N. Ralhmaln, “Implementalsi Daltal Mining Untuk Memprediksi Penyalkit Jalntung Mengunalkaln Metode Nalive Balyes,” J. Innov. Inf. Technol. ALppl., vol. 1, no. 0l1, pp. 25–34, 20l19, doi: 10l.35970l/jinital.v1i0l1.64.
N. Hendralstuty, “Peneralpaln Daltal Mining Menggunalkaln ALlgoritmal K-Mealns Clustering Dallalm Evallualsi Halsil Pembelaljalraln Siswal,” J. Ilm. Inform. Daln Ilmu Komput., vol. 3, no. 1, pp. 46–56, 20l24, [Online]. ALvalilalble: https://doi.org/10l.5860l2/jimal-ilkom.v3i1.26
AL. Septialningsih, “PEMETALALN KALBUPALTEN KOTAL DI PROVINSI JALWAL TIMUR BERDALSALRKALN TINGKALT KALSUS PENYALKIT MENGGUNALKALN,” vol. 3, no. 2, 20l22.
N. H. Sujalckal Retno , Rozzi Kesumal Dinaltal, “EVALLUALTING THE QUALLITY OF K-MEDOIDS CLUSTERING ON CRIME DALTAL IN INDONESIAL,” vol. 8, no. 2, pp. 274–280l, 20l24.
R. M. F. Lubis, J.-P. Hualng, P.-C. Walng, K. Khoifin, Y. Elvinal, alnd D. AL. Kusumalningtyals, “ALgglomeraltive Hieralrchicall Clustering (ALHC) Method for Daltal Mining Salles Product Clustering,” Build. Informaltics, Technol. Sci., vol. 5, no. 1, 20l23, doi: 10l.470l65/bits.v5i1.3569.
l] J. Malntik, M. Ulal, AL. Falridhaltul Ulval, alnd I. Salhputral, “Implementaltion of Malchine Lealrning in Determining Nutritionall Staltus using the Complete Linkalge ALgglomeraltive Hieralrchicall Clustering Method,” J. Malntik, vol. 5, no. 3, pp. 1910l–1914, 20l21.
AL. Raldovalnovic, J. Li, J. V. Milalnovic, N. Milosalvljevic, alnd R. Storchi, “ALpplicaltion of algglomeraltive hieralrchicall clustering for clustering of time series daltal,” IEEE PES Innov. Smalrt Grid Technol. Conf. Eur., vol. 20l20l-October, pp. 640l–644, 20l20l, doi: 10l.110l9/ISGT-Europe47291.20l20l.9248759.
Z. Muttalqin, “Implementalsi Unsupervised Lealrning Paldal Nilali Jalsmalni Kesalmalptalaln Sekolalh Polisi Negalral Dengaln Metode Clustering ALnallysis,” PROSISKO J. Pengemb. Ris. daln Obs. Sist. Komput., vol. 10l, no. 1, pp. 18–23, 20l23, doi: 10l.30l656/prosisko.v10li1.6269.
R. D. Firdalus, T. G. Lalksalnal, alnd R. D. Ralmaldhalni, “Pengelompokaln Daltal Persedialaln Obalt Menggunalkaln Perbalndingaln Metode K-Mealns Dengaln Hieralrchicall Clustering Single LinkalgeFirdalus, Ralhmaltikal Dialnal Lalksalnal, Tri Ginalnjalr Ralmaldhalni, Rimal Dials,” J. Informaltics, Inf. Syst. Softw. Eng. ALppl., vol. 2, no. 1, pp. 33–48, 20l19.
L. M. R. D. J. Nalbilal Tri ALmalndal, Riskal Yulialnti, ALnwalr Fitrialnto, Erfialni, “PERBALNDINGALN METODE COMPLETE LINKALGE, ALVERALGE LINKALGE DALN WALRD’S UNTUK PENGELOMPOKALN KETALHALNALN PALNGALN DI PROVINSI JALWAL TIMUR,” MALTHunesal J. Ilm. Malt., vol. 13, no. 0l1, pp. 227–235, 20l25.
G. ALbdurralhmaln alnd U. M. Jember, “Clustering Daltal Kredit Balnk Menggunalkaln ALlgoritmal ALgglomeraltive Hieralrchicall Clustering ALveralge Linkalge Clustering Daltal Kredit Balnk Menggunalkaln ALlgoritmal ALgglomeraltive Hieralrchicall Clustering ALveralge Linkalge,” no. December, 20l21, doi: 10l.32528/justindo.v4i1.2418.
F. H. AL. Puteral, S. F. Malngitung, Maldinalwalti, alnd L. Halndalyalni, “Clustering of Province in Indonesial Balsed on ALqualculture Productivity Using ALveralge Linkalge Method,” Palralm. J. Stalt., vol. 2, no. 1, pp. 16–20l, 20l21, doi: 10l.22487/27765660l.20l21.v2.i1.15683.
AL. J. Ismal Muthalhhalralh, “Cluster ALnallysis with Complete Linkalge alnd Walrd ’ s Method for Heallth Service Daltal in Malkalssalr City,” vol. 4, no. 2, pp. 10l9–116, 20l21.
S. Indral Maliyalnti, O. Dwipurwalni, alnd N. ALisyalh, “Pengelompokkaln Provinsi Di Indonesial Berdalsalrkaln Konsumsi Kallori Per Kalpital Sehalri Menurut Kelompok Komoditals / Malkalnaln Menggunalkaln ALveralge Linkalge Daln Walrd’s Method,” ALzizalh, daln Nurul ALisyalh, vol. 2, no. 5, pp. 1698–1713, 20l24, [Online]. ALvalilalble: https://journall.institercom-edu.org/index.php/multiple
O. Eric U. alnd O. Michalel O., “Overview of ALgglomeraltive Hieralrchicall Clustering Methods,” Br. J. Comput. Netw. Inf. Technol., vol. 7, no. 2, pp. 14–23, 20l24, doi: 10l.52589/bjcnit-cv9poogw.
l] X. Walng alnd Y. Xu, “ALn improved index for clustering vallidaltion balsed on Silhouette index alnd Callinski-Halralbalsz index,” IOP Conf. Ser. Malter. Sci. Eng., vol. 569, no. 5, 20l19, doi: 10l.10l88/1757-899X/569/5/0l520l24.
DOI: https://doi.org/10.52088/ijesty.v5i2.863
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Dini Dara Rizkya, Sujacka Retno, Zara Yunizar